

CAMK2D ELISA Kit (Rat) (OKCA00954) Instructions for use

For the quantitative measurement of CAMK2D in serum, plasma, tissue homogenates.

This product is intended for research use only.

Lot to lot kit variations can occur. Refer to the manual which has been provided with the kit.

Table of Contents

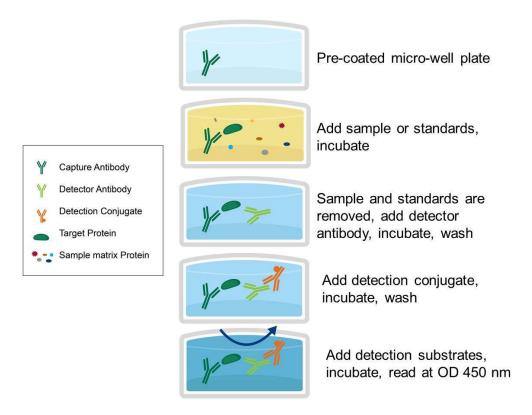
1.	Background	2
	Assay Summary	
3.	Precautions	4
4.	Storage and Stability	3
5.	Kit Components	3
6.	Required Materials Not Supplied	4
7.	Technical Application Tips	4
8.	Reagent Preparation	5
9.	Sample Preparation	7
10.	Assay Procedure	8
11.	Calculation of Results	9
12.	Typical Expected Data	9
13.	Technical Resources	. 11

1. Background

Principle

Aviva Systems Biology CAMK2D ELISA Kit (Rat) (OKCA00954) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific for CAMK2D has been pre-coated onto a 96-wellplate (12 x 8 Well Strips). Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for CAMK2D is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of TMB substrate which is catalyzed by HRP generating a blue color product that changes to yellow after adding acidic stop solution. The density of yellow coloration is read by absorbance at 450 nm and is quantitatively proportional to the amount of sample CAMK2D captured in well.

Background


Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca2+ homeostatis and excitationcontraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca2+ influx into the myocyte, Ca2+ release from the sarcoplasmic reticulum (SR), SR Ca2+ uptake and Na+ and K+ channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca2+ release via direct phosphorylation of RYR2 Ca2+ channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program. Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca2+ influx to myocytes by binding and phosphorylating the L-type Ca2+ channel subunit beta-2 CACNB2. In addition to Ca2+ channels, can target and regulate the cardiac sarcolemmal Na+ channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca2+ uptake that may be important in frequencydependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis. May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca2+ transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor.

General Specifications

General Specifications			
Range 31.25 pg/mL-2,000 pg/mL			
LOD < 7.8 pg/mL (Derived by linear regression of OD ₄₅₀ of the Mean Blank + 2xSD)			
Specificity	Rat Calcium/calmodulin-dependent protein kinase type II subunit delta <u>UniProt ID</u> : 077708 <u>GeneID</u> : 100101557		
Cross-Reactivity No detectable cross-reactivity with other relevant proteins			

2. Assay Summary

3. Storage and Stability

• Upon receipt store kit at 4°C for 6 months. Do not use past expiration date.

4. Kit Components

•The following reagents are the provided contents of the kit.

Description	Quantity	Storage Conditions
Anti-CAMK2D Microplate	96 Wells (12 x 8 Well strips)	
CAMK2D Lyophilized Standard	2 x 2 ng	
100X Biotinylated CAMK2D Detector Antibody	1 x 120 μL	4°C for 6
100X Avidin-HRP Conjugate	1 x 120 μL	Month
Sample Diluent	1 x 50 mL	Do not use
Detector Antibody Diluent	1 x 15 mL	past
Conjugate Diluent	1 x 15 mL	expiration
25X Wash Buffer	1 x 20 mL	date.
Stop Solution	1 x 10 mL	
TMB Substrate	1 x 10 mL	

5. Precautions

- Read instructions fully prior to beginning use of the assay kit.
- Any deviations or modifications from the described method or use of other reagents could result in a reduction of performance.
- Reduce exposure to potentially harmful substances by wearing personal protective lab equipment including lab coats, gloves and glasses.
- For information on hazardous substances included in the kit please refer to the Material Safety Data Sheet (MSDS).
- Kit cannot be used beyond the expiration date on the label.

6. Required Materials Not Supplied

- Microplate reader capable of reading absorbance at 450 nm.
- · Automated plate washer (optional).
- Pipettes capable of precisely dispensing 0.5 µL through 1 mL volumes of aqueous solutions.
- Pipettes or volumetric glassware capable of precisely measuring 1 mL through 100 mL of aqueous solutions.
- · New, clean tubes and/or micro-centrifuge tubes for the preparation of standards or samples.
- · Absorbent paper or paper toweling.
- Distilled or deionized ultrapure water.
- 37°C Incubator (optional)

7. Technical Application Tips

- Do not mix or substitute components from other kits.
- To ensure the validity of experimental operation, it is recommended that pilot experiments using standards and a small selection of sample dilutions to ensure optimal dilution range for quantitation.
- Samples exhibiting OD measurements higher than the highest standard should be diluted further in the appropriate sample dilution buffers.
- Prior to using the kit, briefly spin component tubes to collect all reagents at the bottom.
- Replicate wells are recommended for standards and samples.
- Cover microplate while incubating to prevent evaporation.
- Do not allow the microplate wells dry at any point during the assay procedure.
- Do not reuse tips or tube to prevent cross contamination.
- Avoid causing bubbles or foaming when pipetting, mixing or reconstituting.
- Completely remove of all liquids when washing to prevent cross contamination.
- Prepare reagents immediately prior to use and do not store, with the exception of the top standard.
- Equilibrate all materials to ambient room temperature prior to use (standards exception).
- For optimal results for inter- and intra-assay consistency, equilibrate all materials to 37°C prior to performing assay (standards exception) and perform all incubations at 37°C.
- Pipetting less than 1 µL is not recommended for optimal assay accuracy.
- Once the procedure has been started, all steps should be completed without interruption. Ensure that all reagents, materials and devices are ready at the appropriate time.
- Incubation times will affect results. All wells should be handled in the same sequential order and time intervals for optimal results.
- Samples containing precipitates, fibrin strands or bilirubin, or are hemolytic or lipemic might cause inaccurate results due to interfering factors.
- TMB Substrate is easily contaminated and should be colorless or light blue until added to plate. Handle carefully and protect from light.


8. Reagent Preparation

• Equilibrate all materials to room temperature prior to use and use prepare immediately prior to use.

8.1 Rat CAMK2D Assay Standards

- 8.1.1 Prepare the CAMK2D standards no greater than 2 hours prior to performing experiment. Standards should be held on ice until use in the experiment.
- 8.1.2 Reconstitute one vial of the provided **2,000 pg Lyophilized CAMK2D Standard** for each experiment. Prepare the stock **2,000 pg/mL CAMK2D Standard** by reconstituting one tube of **2,000 pg Lyophilized CAMK2D Standard** as follows:
 - 8.1.2.1 Gently spin or tap the vial at 6,000 10,000 rpm for 30 seconds to collect all material at the bottom.
 - 8.1.2.2 Add **1.0 mL** of **Sample Diluent** to the vial.
 - 8.1.2.3 Seal the vial then mix gently and thoroughly.
 - 8.1.2.4 Leave the vial at ambient temperature for 15 minutes.
- 8.1.3 Prepare a set of seven serially diluted standards as follows:
 - 8.1.3.1 Label tubes with numbers 2 8.
 - 8.1.3.2 Use the undiluted **2,000 pg/mL CAMK2D Standard** as the high standard point (Tube #1).
 - 8.1.3.3 Add 300 μ L of **Sample Diluent** to Tube #'s 2 8.
 - 8.1.3.4 Prepare **Standard #2** by adding 300 μL of **2,000 pg/mL CAMK2D Standard** (Tube #1) to Tube #2. Mix gently and thoroughly.
 - 8.1.3.5 Prepare **Standard #3** by adding 300 μ L of **Standard #2** from Tube #2 to Tube #3. Mix gently and thoroughly.
 - 8.1.3.6 Prepare further serial dilutions through Tube #7. Reference the table below as a guide for serial dilution scheme.
 - 8.1.3.7 Tube #8 is a blank standard (only **Sample Diluent**), which should be included with every experiment.

Standard Number (Tube)	Standard To Dilute	Volume Standard to Dilute (μL)	Volume Sample Diluent (μL)	Total Volume (μL)	Final Concentration
1	2,000 pg/mL Reconstituted CAMK2D Standard	NA	NA	NA	2,000 pg/mL
2	2,000 pg/mL	300	300	600	1,000 pg/mL
3	1,000 pg/mL	300	300	600	500 pg/mL
4	500 pg/mL	300	300	600	250 pg/mL
5	250 pg/mL	300	300	600	125 pg/mL
6	125 pg/mL	300	300	600	62.5 pg/mL
7	62.5 pg/mL	300	300	600	31.25 pg/mL
8	NA	0	300	300	0.0 (Blank)

8.2 1X Biotinylated CAMK2D Detector Antibody

- 8.2.1 Prepare the **1X Biotinylated CAMK2D Detector Antibody** immediately prior to use by diluting the **100X Biotinylated CAMK2D Detector Antibody** 1:100 with **Detector Antibody Diluent**.
- 8.2.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 μL by adding 10 μL of **100X Biotinylated CAMK2D Detector Antibody** to 990 μL **Detector Antibody Diluent**.
- 8.2.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.3 1X HRP-Avidin Conjugate

- 8.3.1 Prepare the **1X Avidin-HRP Conjugate** immediately prior to use by diluting the **100X Avidin-HRP Conjugate** 1:100 with **Conjugate Diluent**.
- 8.3.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 μL by adding 10 μL of **100X Avidin-HRP Conjugate** to 990 μL **Conjugate Diluent**.
- 8.3.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.4 1X Wash Buffer

- 8.4.1 If crystals have formed in the **25X Wash Buffer** concentrate, equilibrate to room temperature and mix gently until crystals have completely dissolved.
- 8.4.2 Add the entire 20 mL contents of the **25X Wash Buffer** bottle to 480 mL of ultra-pure water to a clean > 1,000 mL bottle or other vessel.
- 8.4.3 Seal and mix gently by inversion. Avoid foaming or bubbles.
- 8.4.4 Store the **1X Wash Buffer** at room temperature until ready to use in the procedure. Store the prepared **1X Wash Buffer** at 4°C for no longer than 1 week. Do not freeze.

8.5 Microplate Preparation

- Micro-plates are provided ready to use and do not require rinsing or blocking.
- Unused well strips should be returned to the original packaging, sealed and stored at 4°C.
- Equilibrate microplates to ambient temperatures prior to opening to reduce potential condensation.

9. Sample Preparation

9.1 Sample Preparation and Storage

- Store samples to be assayed at 2-8°C for 24 hours prior being assayed.
- For long term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.
- Samples not indicated in the manual must be tested to determine if the kit is valid.
- Prepare samples as follows:
- Serum Use a serum separator tube (SST) and allow samples to clot for two hours at room temperature or overnight at 4°C before centrifugation for 15 minutes at 1,000 x g. Remove serum and assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
- Plasma Collect plasma using EDTA, or heparin as an anticoagulant. Centrifuge for 15 minutes at 1,000 x g at 2-8°C within 30 minutes of collection. Assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
- Tissue Homogenates Rinse 100 mg of tissue with 1X PBS, then homogenize in 1 mL of 1X PBS and stored overnight at -20°C. Perform two freeze-thaw cycles to break the cell membranes, then centrifuge the homogenates for 5 minutes at 5,000 x g, 2-8°C. Remove the supernatant and assay immediately. Alternatively, aliquot and store samples at -20°C or -80°C. Centrifuge the sample again after thawing before the assay. Avoid repeated freeze-thaw cycles.

9.2 Sample Dilution

Target protein concentration must be estimated and appropriate sample dilution selected such that the final target protein concentration falls near the middle of the assay linear dynamic range. Samples exhibiting saturation should be further diluted.

- · Dilute samples using Sample Diluent.
- · Mix diluted samples gently and thoroughly.
- Pipetting less than 2 µL is not recommended for optimal assay accuracy.

10. Assay Procedure

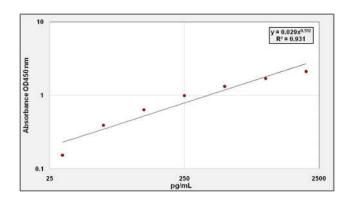
- Equilibrate all reagents and materials to ambient room temperature prior to use in the procedure.
- Optimal results for intra- and inter-assay reproducibility will be obtained when performing incubation steps at 37°C as indicated below.
- **10.1** Determine the required number of wells and return any remaining unused wells and desiccant to the pouch.
- 10.2 Add 100 μL of serially titrated standards, diluted samples or blank into wells of the Anti-CAMK2D Microplate. At least two replicates of each standard, sample or blank is recommended.
- **10.3** Cover the plate with the well plate lid and incubate at 37°C for 2 hours.
- **10.4** Remove the plate lid and discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- **10.5** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.6 Add 100 µL of prepared 1X Biotinylated CAMK2D Detector Antibody to each well.
- **10.7** Cover with the well-plate lid and incubate at 37°C for 60 minutes.
- **10.8** Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- **10.9** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.10 Wash plate 3 times with 1X Wash Buffer as follows:
 - 10.10.1 Add 300 µL of 1X Wash Buffer to each assay well.
 - 10.10.2 Incubate for 1 minute.
 - 10.10.3 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle.
 - 10.10.4 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
 - 10.10.5 Repeat steps 10.10.1 through 10.10.4 two more times.
- **10.11** Add 100 μL of prepared **1XAvidin-HRP Conjugate** into each well and incubate at 37°C for 60 minutes.
- **10.12** Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- **10.13** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.14 Wash plate 5 times with 1X Wash Buffer as in Step 10.10.
- 10.15 Add 90 μL of TMB Substrate to each well and incubate at 37°C in the dark for 15-30 minutes. Wells should change to gradations of blue. If the color is too deep, reduce the incubation time. (NOTE: optimal incubation time must be determined by the user. Optimal development can be visualized by blue shading in the top four standard wells, while the remaining standards are still clear.)
- 10.16 Add 50 μ L of **Stop Solution** to each well. Well color should change to yellow immediately. Add the **Stop Solution** in the same well order as done for the **TMB Substrate**.
- **10.17** Read the O.D. absorbance at 450 nm with a standard microplate reader within 5 minutes of stopping the reaction in step 10.16. If wavelength correction is available, set to 540 nm or 570 nm.

11. Calculation of Results

For analysis of the assay results, calculate the Relative OD₄₅₀ for each test or standard well as follows:

(Relative
$$OD_{450}$$
) = (Well OD_{450}) – (Mean Blank Well OD_{450})

The standard curve is generated by plotting the mean replicate **Relative OD**₄₅₀ of each standard serial dilution point vs. the respective standard concentration. The **CAMK2D** concentration contained in the samples can be interpolated by using linear regression of each mean sample **Relative OD**₄₅₀ against the standard curve. This is best achieved using curve fitting software.


Note: If wavelength correction readings were available, subtract the readings at 540 nm or 570 nm from the readings at 450 nm. This may provide greater reading accuracy.

Note: If the samples measured were diluted, multiply the derived mean sample concentration by the dilution factor for a final sample concentration.

12. Typical Expected Data

12.1 Typical standard curve

This standard curve is for demonstration purposes only. An assay specific standard curve should be performed with each assay

pg/mL	Absorbance (OD450 nm)		Mean	Blank Subtracted
	1	2		Subtracteu
2000	2.312	2.154	2.233	2.100
1000	1.884	1.769	1.827	1.694
500	1.502	1.415	1.459	1.326
250	1.136	1.118	1.127	0.994
125	0.754	0.790	0.772	0.639
62.5	0.534	0.515	0.525	0.392
31.25	0.284	0.289	0.287	0.154
0	0.132	0.134	0.133	

12.2 Reproducibility

Intra-assay Precision: 3 samples with known low, middle and high levels CAMK2D were tested with 20 replicates on one plate, respectively.

Inter-assay Precision: 3 samples with known low, middle and high level CAMK2D were tested on 3 different plates, 8 replicates in each plate.

Mean Intra-Assay: CV ≤8% Mean Inter-Assay: CV ≤10%

12.3 Linearity

Kit linearity evaluated by replicate testing (n=4) serially diluted serum spiked with known concentration of CAMK2D. Results are expressed as the percentage of the expected concentration measurement.

DilutionLevel	Average (%)	Range (%)
Neat	95	89-99
1:2	108	103-112
1:4	88	86-92
1:8	96	88-99

12.4 Recovery

The following matrices were spiked with known concentration of CAMK2D. Recovery is expressed as the percentage of the expected concentration measurement.

Sample Type	Mean Recovery (%)	Range (%)
Serum (n=5)	89	83-94
EDTA Plasma (n=4)	96	91-103

13. Technical Resources

Technical Support:

For optimal service please be prepared to supply the lot number of the kit used.

<u>USA</u>

Aviva Systems Biology, Corp. 5754 Pacific Center Blvd, Suite 201 San Diego, CA 92121

Phone: 858-552-6979 Toll Free: 888-880-0001 Fax: 858-552-6975

Technical support: techsupport@avivasysbio.com

China

Beijing AVIVA Systems Biology 6th Floor, B Building, Kaichi Tower #A-2 Jinfu Road. Daxing Industrial Development Zone Beijing, 102600, CHINA

Phone: (86)10-60214720 Fax: (86)10-60214722

E-mail: support@avivasysbio.com.cn

中国地址:北京大兴工业开发区金辅路甲2号凯驰大厦B座6层(102600)

电话: 010-60214720/21 传真: 010-60214722

产品售前咨询及销售: sales@avivasysbio.com.cn售后及技术支持: support@avivasysbio.com.cn