

CARD9 ELISA Kit (Human) (OKCA01145)

Instructions for use

For the quantitative measurement of CARD9 in serum, plasma, tissue homogenates, cell lysates.

This product is intended for research use only.

Lot to lot kit variations can occur. Refer to the manual which has been provided with the kit.

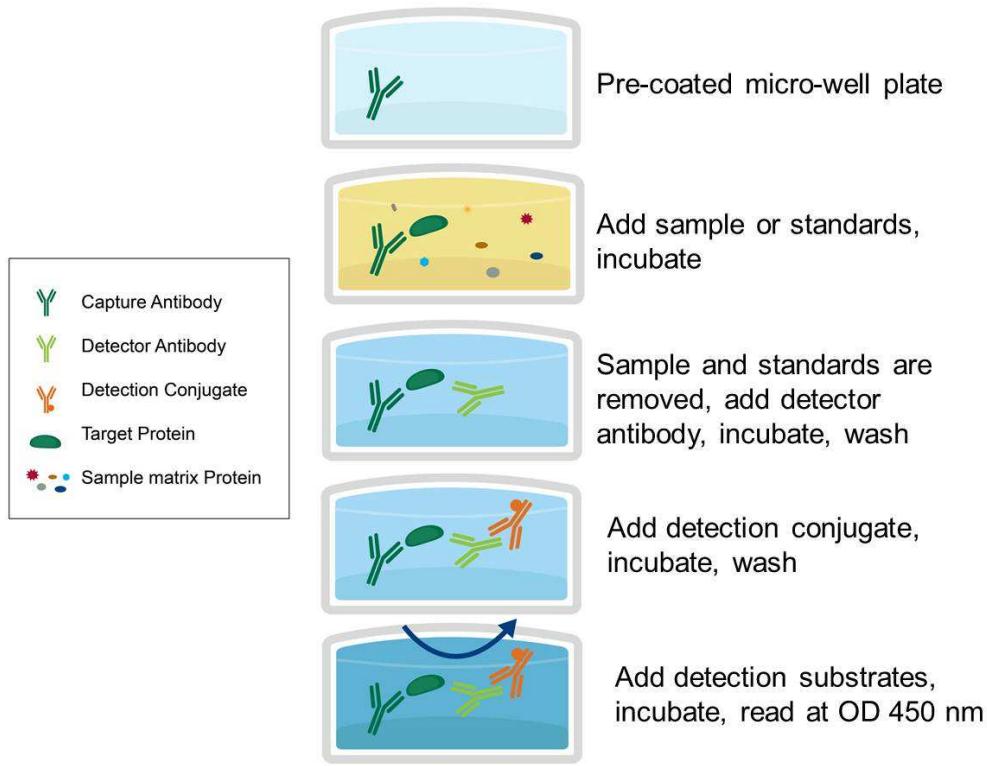
Table of Contents

1. Background	2
2. Assay Summary	2
3. Precautions	4
4. Storage and Stability	3
5. Kit Components.....	3
6. Required Materials Not Supplied	4
7. Technical Application Tips.....	4
8. Reagent Preparation	5
9. Sample Preparation.....	7
10. Assay Procedure	8
11. Calculation of Results.....	9
12. Typical Expected Data	9
13. Technical Resources.....	11

1. Background

Principle

Aviva Systems Biology CARD9 ELISA Kit (Human) (OKCA01145) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific for CARD9 has been pre-coated onto a 96-wellplate (12 x 8 Well Strips). Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for CARD9 is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of TMB substrate which is catalyzed by HRP generating a blue color product that changes to yellow after adding acidic stop solution. The density of yellow coloration is read by absorbance at 450 nm and is quantitatively proportional to the amount of sample CARD9 captured in well.


Background

Adapter protein that plays a key role in innate immune response to a number of intracellular pathogens, such as *C.albicans* and *L.monocytogenes*. Is at the crossroads of ITAM-tyrosine kinase and the Toll-like receptors (TLR) and NOD2 signaling pathways. Probably controls various innate immune response pathways depending on the intracellular pathogen. In response to *L.monocytogenes* infection, acts by connecting NOD2 recognition of peptidoglycan to downstream activation of MAP kinases (MAPK) without activating NF-kappa-B. Also involved in activation of myeloid cells via classical ITAM-associated receptors and TLR: required for TLR-mediated activation of MAPK, while it is not required for TLR-induced activation of NF-kappa-B. Controls CLEC7A (dectin-1)-mediated myeloid cell activation induced by the yeast cell wall component zymosan, leading to cytokine production and innate anti-fungal immunity: acts by regulating BCL10-MALT1-mediated NF-kappa-B activation pathway. Activates NF-kappa-B via BCL10. In response to the hyphal form of *C.albicans*, mediates CLEC6A (dectin-2)-induced I-kappa-B kinase ubiquitination, leading to NF-kappa-B activation via interaction with BCL10. In response to fungal infection, may be required for the development and subsequent differentiation of interleukin 17-producing T helper (TH-17) cells.

General Specifications

General Specifications	
Range	18.75 - 1,200 pg/mL
LOD	< 4.69 pg/mL (Derived by linear regression of OD ₄₅₀ of the Mean Blank + 2xSD)
Specificity	Human Caspase recruitment domain-containing protein 9 <u>UniProt ID:</u> Q9H257 <u>GeneID:</u> 64170 <u>Target Alias:</u> hCARD9, caspase recruitment domain protein 9
Cross-Reactivity	No detectable cross-reactivity with other relevant proteins

2. Assay Summary

3. Storage and Stability

- Upon receipt store kit at 4°C for 6 months. Do not use past expiration date.

4. Kit Components

- The following reagents are the provided contents of the kit.

Description	Quantity	Storage Conditions
Anti-CARD9 Microplate	96 Wells (12 x 8 Well strips)	4°C for 6 Month Do not use past expiration date.
CARD9 Lyophilized Standard	2 x 1.2 ng	
100X Biotinylated CARD9 Detector Antibody	1 x 120 µL	
100X Avidin-HRP Conjugate	1 x 120 µL	
Sample Diluent	1 x 50 mL	
Detector Antibody Diluent	1 x 15 mL	
Conjugate Diluent	1 x 15 mL	
25X Wash Buffer	1 x 20 mL	
Stop Solution	1 x 10 mL	
TMB Substrate	1 x 10 mL	

5. Precautions

- Read instructions fully prior to beginning use of the assay kit.
- Any deviations or modifications from the described method or use of other reagents could result in a reduction of performance.
- Reduce exposure to potentially harmful substances by wearing personal protective lab equipment including lab coats, gloves and glasses.
- For information on hazardous substances included in the kit please refer to the Material Safety Data Sheet (MSDS).
- Kit cannot be used beyond the expiration date on the label.

6. Required Materials Not Supplied

- Microplate reader capable of reading absorbance at 450 nm.
- Automated plate washer (optional).
- Pipettes capable of precisely dispensing 0.5 μ L through 1 mL volumes of aqueous solutions.
- Pipettes or volumetric glassware capable of precisely measuring 1 mL through 100 mL of aqueous solutions.
- New, clean tubes and/or micro-centrifuge tubes for the preparation of standards or samples.
- Absorbent paper or paper toweling.
- Distilled or deionized ultrapure water.
- 37°C Incubator (optional)

7. Technical Application Tips

- Do not mix or substitute components from other kits.
- To ensure the validity of experimental operation, it is recommended that pilot experiments using standards and a small selection of sample dilutions to ensure optimal dilution range for quantitation.
- Samples exhibiting OD measurements higher than the highest standard should be diluted further in the appropriate sample dilution buffers.
- Prior to using the kit, briefly spin component tubes to collect all reagents at the bottom.
- Replicate wells are recommended for standards and samples.
- Cover microplate while incubating to prevent evaporation.
- Do not allow the microplate wells dry at any point during the assay procedure.
- Do not reuse tips or tube to prevent cross contamination.
- Avoid causing bubbles or foaming when pipetting, mixing or reconstituting.
- Completely remove of all liquids when washing to prevent cross contamination.
- Prepare reagents immediately prior to use and do not store, with the exception of the top standard.
- Equilibrate all materials to ambient room temperature prior to use (standards exception).
- For optimal results for inter- and intra-assay consistency, equilibrate all materials to 37°C prior to performing assay (standards exception) and perform all incubations at 37°C.
- Pipetting less than 1 μ L is not recommended for optimal assay accuracy.
- Once the procedure has been started, all steps should be completed without interruption. Ensure that all reagents, materials and devices are ready at the appropriate time.
- Incubation times will affect results. All wells should be handled in the same sequential order and time intervals for optimal results.
- Samples containing precipitates, fibrin strands or bilirubin, or are hemolytic or lipemic might cause inaccurate results due to interfering factors.
- TMB Substrate is easily contaminated and should be colorless or light blue until added to plate. Handle carefully and protect from light.

8. Reagent Preparation

- Equilibrate all materials to room temperature prior to use and use prepare immediately prior to use.

8.1 Human CARD9 Assay Standards

- 8.1.1 Prepare the CARD9 standards no greater than 2 hours prior to performing experiment. Standards should be held on ice until use in the experiment.
- 8.1.2 Reconstitute one vial of the provided **1.2 ng Lyophilized CARD9 Standard** for each experiment. Prepare the stock **1.2 ng CARD9 Standard** by reconstituting one tube of **1.2 ng Lyophilized CARD9 Standard** as follows:
 - 8.1.2.1 Gently spin or tap the vial at 6,000 – 10,000 rpm for 30 seconds to collect all material at the bottom.
 - 8.1.2.2 Add **1.0 mL** of **Sample Diluent** to the vial.
 - 8.1.2.3 Seal the vial then mix gently and thoroughly.
 - 8.1.2.4 Leave the vial at ambient temperature for 15 minutes.
- 8.1.3 Prepare a set of seven serially diluted standards as follows:
 - 8.1.3.1 Label tubes with numbers 2 – 8.
 - 8.1.3.2 Use the undiluted **1.2 ng CARD9 Standard** as the high standard point (Tube #1).
 - 8.1.3.3 Add 300 μ L of **Sample Diluent** to Tube #'s 2 – 8.
 - 8.1.3.4 Prepare **Standard #2** by adding 300 μ L of **1.2 ng CARD9 Standard** (Tube #1) to Tube #2. Mix gently and thoroughly.
 - 8.1.3.5 Prepare **Standard #3** by adding 300 μ L of **Standard #2** from Tube #2 to Tube #3. Mix gently and thoroughly.
 - 8.1.3.6 Prepare further serial dilutions through Tube #7. Reference the table below as a guide for serial dilution scheme.
 - 8.1.3.7 Tube #8 is a blank standard (only **Sample Diluent**), which should be included with every experiment.

Standard Number (Tube)	Standard To Dilute	Volume Standard to Dilute (μ L)	Volume Sample Diluent (μ L)	Total Volume (μ L)	Final Concentration
1	1.2 ng Reconstituted CARD9 Standard	NA	NA	NA	1.2 ng
2	1.2 ng	300	300	600	0.6 ng
3	0.6 ng	300	300	600	0.3 ng
4	0.3 ng	300	300	600	0.15 ng
5	0.15 ng	300	300	600	0.075 ng
6	0.075 ng	300	300	600	0.038 ng
7	0.038 ng	300	300	600	0.019 ng
8	NA	0	300	300	0.0 (Blank)

8.2 1X Biotinylated CARD9 Detector Antibody

- 8.2.1 Prepare the **1X Biotinylated CARD9 Detector Antibody** immediately prior to use by diluting the **100X Biotinylated CARD9 Detector Antibody** 1:100 with **Detector Antibody Diluent**.
- 8.2.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 µL by adding 10 µL of **100X Biotinylated CARD9 Detector Antibody** to 990 µL **Detector Antibody Diluent**.
- 8.2.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.3 1X HRP-Avidin Conjugate

- 8.3.1 Prepare the **1X Avidin-HRP Conjugate** immediately prior to use by diluting the **100X Avidin-HRP Conjugate** 1:100 with **Conjugate Diluent**.
- 8.3.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 µL by adding 10 µL of **100X Avidin-HRP Conjugate** to 990 µL **Conjugate Diluent**.
- 8.3.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.4 1X Wash Buffer

- 8.4.1 If crystals have formed in the **25X Wash Buffer** concentrate, equilibrate to room temperature and mix gently until crystals have completely dissolved.
- 8.4.2 Add the entire 20 mL contents of the **25X Wash Buffer** bottle to 480 mL of ultra-pure water to a clean > 1,000 mL bottle or other vessel.
- 8.4.3 Seal and mix gently by inversion. Avoid foaming or bubbles.
- 8.4.4 Store the **1X Wash Buffer** at room temperature until ready to use in the procedure. Store the prepared **1X Wash Buffer** at 4°C for no longer than 1 week. Do not freeze.

8.5 Microplate Preparation

- Micro-plates are provided ready to use and do not require rinsing or blocking.
- Unused well strips should be returned to the original packaging, sealed and stored at 4°C.
- Equilibrate microplates to ambient temperatures prior to opening to reduce potential condensation.

9. Sample Preparation

9.1 Sample Preparation and Storage

- Store samples to be assayed at 2-8°C for 24 hours prior being assayed.
- For long term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.
- Samples not indicated in the manual must be tested to determine if the kit is valid.
- Prepare samples as follows:
 - Serum - Use a serum separator tube (SST) and allow samples to clot for two hours at room temperature or overnight at 4°C before centrifugation for 15 minutes at 1,000 x g. Remove serum and assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
 - Plasma - Collect plasma using EDTA, or heparin as an anticoagulant. Centrifuge for 15 minutes at 1,000 x g at 2-8°C within 30 minutes of collection. Assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
 - Tissue Homogenates – Rinse 100 mg of tissue with 1X PBS, then homogenize in 1 mL of 1X PBS and stored overnight at -20°C. Perform two freeze-thaw cycles to break the cell membranes, then centrifuge the homogenates for 5 minutes at 5,000 x g, 2-8°C. Remove the supernatant and assay immediately. Alternatively, aliquot and store samples at -20°C or -80°C. Centrifuge the sample again after thawing before the assay. Avoid repeated freeze-thaw cycles.
- Cell Lysates –
 - Adherent Cells - Remove media and rinse cells once with ice-cold PBS (pH 7.2-7.4). Scrape cells off the plate and transfer to an appropriate tube. Dilute cell suspension with 1x PBS (pH 7.2-7.4) for a final cell concentration of 100 million/mL, then store overnight at -20°C. Perform two freeze-thaw cycles to break up the cell membranes, then centrifuge the cell lysates for 5 minutes at 5,000 x g, 2 - 8°C. Collect the supernatant. Cell lysates should be assayed immediately or aliquotted and stored at -20°C. Centrifuge the sample again after thawing before the assay. Avoid repeated freeze-thaw cycles.
 - Suspended Cells - Collect cells and centrifuge for 5 minutes at 1,000 x g, 2 - 8°C. Remove the supernatant and resuspend cells with 1x PBS (pH 7.2-7.4). Centrifuge for 5 minutes at 1,000 x g, 2 - 8°C. Remove the supernatant. Dilute cell with 1x PBS (pH 7.2-7.4), for a final cell concentration of 100 million/mL. Store overnight at -20°C. Perform two freeze-thaw cycles to break up the cell membranes, then centrifuge the cell lysates for 5 minutes at 5,000 x g, 2 - 8°C. Collect the supernatant. Cell lysates should be assayed immediately or aliquotted and stored at -20°C. Centrifuge the sample again after thawing before the assay. Avoid repeated freeze-thaw cycles.

9.2 Sample Dilution

Target protein concentration must be estimated and appropriate sample dilution selected such that the final target protein concentration falls near the middle of the assay linear dynamic range. Samples exhibiting saturation should be further diluted.

- Dilute samples using **Sample Diluent**.
- Mix diluted samples gently and thoroughly.
- Pipetting less than 2 μ L is not recommended for optimal assay accuracy.

10. Assay Procedure

- Equilibrate all reagents and materials to ambient room temperature prior to use in the procedure.
- Optimal results for intra- and inter-assay reproducibility will be obtained when performing incubation steps at 37°C as indicated below.

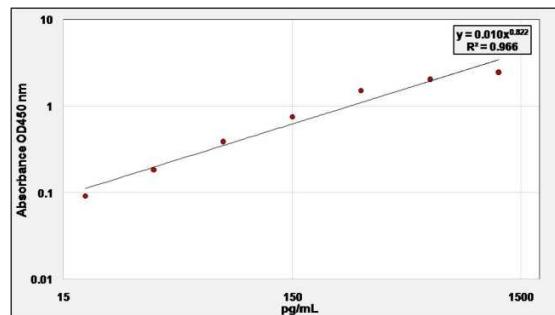
- 10.1** Determine the required number of wells and return any remaining unused wells and desiccant to the pouch.
- 10.2** Add 100 µL of serially titrated standards, diluted samples or blank into wells of the **Anti-CARD9 Microplate**. At least two replicates of each standard, sample or blank is recommended.
- 10.3** Cover the plate with the well plate lid and incubate at 37°C for 2 hours.
- 10.4** Remove the plate lid and discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- 10.5** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.6** Add 100 µL of prepared **1X Biotinylated CARD9 Detector Antibody** to each well.
- 10.7** Cover with the well-plate lid and incubate at 37°C for 60 minutes.
- 10.8** Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- 10.9** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.10** Wash plate 3 times with **1X Wash Buffer** as follows:
 - 10.10.1 Add 300 µL of **1X Wash Buffer** to each assay well.
 - 10.10.2 Incubate for 2 minute.
 - 10.10.3 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle.
 - 10.10.4 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
 - 10.10.5 Repeat steps 10.10.1 through 10.10.4 **two** more times.
- 10.11** Add 100 µL of prepared **1X Avidin-HRP Conjugate** into each well and incubate at 37°C for 60 minutes.
- 10.12** Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- 10.13** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.14** Wash plate **5 times** with **1X Wash Buffer** as in Step 10.10.
- 10.15** Add 90 µL of **TMB Substrate** to each well and incubate at 37°C **in the dark** for 15-30 minutes. Wells should change to gradations of blue. If the color is too deep, reduce the incubation time.
(NOTE: optimal incubation time must be determined by the user. Optimal development can be visualized by blue shading in the top four standard wells, while the remaining standards are still clear.)
- 10.16** Add 50 µL of **Stop Solution** to each well. Well color should change to yellow immediately. Add the **Stop Solution** in the same well order as done for the **TMB Substrate**.
- 10.17** Read the O.D. absorbance at 450 nm with a standard microplate reader within 5 minutes of stopping the reaction in step 10.16. If wavelength correction is available, set to 540 nm or 570 nm.

11. Calculation of Results

For analysis of the assay results, calculate the **Relative OD₄₅₀** for each test or standard well as follows:

$$(\text{Relative OD}_{450}) = (\text{Well OD}_{450}) - (\text{Mean Blank Well OD}_{450})$$

The standard curve is generated by plotting the mean replicate **Relative OD₄₅₀** of each standard serial dilution point vs. the respective standard concentration. The **CARD9** concentration contained in the samples can be interpolated by using linear regression of each mean sample **Relative OD₄₅₀** against the standard curve. This is best achieved using curve fitting software.


Note: If wavelength correction readings were available, subtract the readings at 540 nm or 570 nm from the readings at 450 nm. This may provide greater reading accuracy.

Note: If the samples measured were diluted, multiply the derived mean sample concentration by the dilution factor for a final sample concentration.

12. Typical Expected Data

12.1 Typical standard curve

This standard curve is for demonstration purposes only. An assay specific standard curve should be performed with each assay

pg/mL	Absorbance (OD450 nm)		Mean	Blank Subtracted
	1	2		
1200	2.498	2.712	2.605	2.428
600	2.126	2.255	2.191	2.014
300	1.674	1.688	1.681	1.504
150	0.936	0.925	0.931	0.754
75	0.550	0.574	0.562	0.385
37.5	0.369	0.355	0.362	0.185
18.75	0.268	0.269	0.269	0.092
0	0.173	0.180	0.177	

12.2 Reproducibility

Intra-assay Precision: 3 samples with known low, middle and high levels CARD9 were tested with 20 replicates on one plate, respectively.

Inter-assay Precision: 3 samples with known low, middle and high level CARD9 were tested on 3 different plates, 8 replicates in each plate.

Mean Intra-Assay: CV \leq 8%

Mean Inter-Assay: CV \leq 10%

12.3 Linearity

Kit linearity evaluated by replicate testing (n=4) serially diluted serum spiked with known concentration of CARD9. Results are expressed as the percentage of the expected concentration measurement.

Dilution Level	Average (%)	Range (%)
Neat	93	88-97
1:2	104	100-107
1:4	92	88-96
1:8	95	91-97

12.4 Recovery

The following matrices were spiked with known concentration of CARD9. Recovery is expressed as the percentage of the expected concentration measurement.

Sample Type	Mean Recovery (%)	Range (%)
Serum (n=5)	98	93-104
EDTA Plasma (n=4)	95	92-98

13. Technical Resources

Technical Support:

For optimal service please be prepared to supply the lot number of the kit used.

USA

Aviva Systems Biology, Corp.
5754 Pacific Center Blvd, Suite 201
San Diego, CA 92121

Phone: 858-552-6979
Toll Free: 888-880-0001
Fax: 858-552-6975

Technical support: techsupport@avivasysbio.com

China

Beijing AVIVA Systems Biology
6th Floor, B Building, Kaichi Tower
#A-2 Jinfu Road.
Daxing Industrial Development Zone
Beijing, 102600, CHINA

Phone: (86)10-60214720
Fax: (86)10-60214722
E-mail: support@avivasysbio.com.cn

中国地址: 北京大兴工业开发区金辅路甲 2 号凯驰大厦 B 座 6 层 (102600)
电话: 010-60214720/21
传真: 010-60214722

产品售前咨询及销售: sales@avivasysbio.com.cn
售后及技术支持: support@avivasysbio.com.cn