

Clock ELISA Kit (Mouse) OKCD02092 Instructions for use

For the quantitative measurement of Clock in tissue homogenates, cell lysates and other biological fluids

Lot to lot variation can occur. Refer to the manual provided with the kit. This product is intended for research use only.

Table of Contents

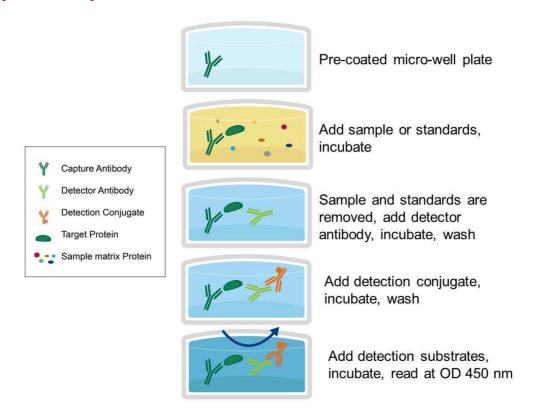
1.	Background	. 2
	Assay Summary	
3.	Storage and Stability	. 3
4.	Kit Components	. 3
5.	Precautions	. 4
6.	Required Materials Not Supplied	. 4
7.	Technical Application Tips	. 4
8.	Reagent Preparation	. 5
9.	Sample Preparation	. 7
10.	Assay Procedure	. 8
11.	Calculation of Results.	. 9
12.	Typical Expected Data	. 9
13.	Technical Resources	11

1. Background

Principle

Aviva Systems Biology Clock ELISA Kit (Mouse) (OKCD02092) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific for Clock has been pre-coated onto a 96-wellplate (12 x 8 Well Strips). Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for Clock is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of TMB substrate which is catalyzed by HRP generating a blue color product that changes yellow after adding acidic stop solution. The density of yellow coloration read by absorbance at 450 nm and is quantitatively proportional to the amount of sample Clock captured in well.

Background


Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. May play a role in spermatogenesis; contributes to the chromatoid body assembly and physiology. The CLOCK-ARNTL2/BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1.

General Specifications

General Specifications								
Range	0.156 - 10 ng/mL							
LOD	<0.063 ng/mL (Derived by linear regression of OD ₄₅₀ of the Mean Blank + 2xSD)							
	Mouse Circadian locomoter output cycles protein kaput							
	<u>UniProt ID</u> : O08785							
Specificity	<u>GeneID</u> : 12753							
	Target Alias: 5330400M04Rik, bHLHe8, Circadian locomoter output cycles protein kaput, KAT13D, mCLOCK, mKIAA0334							
Cross-Reactivity	No detectable cross-reactivity with other relevant proteins							

2. Assay Summary

3. Storage and Stability

• Upon receipt store kit at 4°C for 1 month or -20°C for long term storage (exceptions noted below). Avoid any freeze/thaw cycles.

4. Kit Components

•The following reagents are the provided contents of the kit.

Description	Quantity	Storage Conditions	
Anti-Clock Microplate	96 Wells (12 x 8 Well strips)		
Clock Lyophilized Standard	2 x 10 ng		
100X Biotinylated Clock Detector Antibody	1 x 120 μL	400 (0.14 ()	
100X Avidin-HRP Conjugate	1 x 120 μL	4°C for 6 Months	
Standard Diluent	1 x 20 mL	-20°C for 12 Months	
Detector Antibody Diluent	1 x 12 mL		
Conjugate Diluent	1 x 12 mL		
30X Wash Buffer	1 x 20 mL		
Stop Solution	1 x 6 mL	Store at 4°C for 12	
TMB Substrate	1 x 9 mL	Months	

5. Precautions

- Read instructions fully prior to beginning use of the assay kit.
- Any deviations or modifications from the described method or use of other reagents could result in a reduction of performance.
- Reduce exposure to potentially harmful substances by wearing personal protective lab equipment including lab coats, gloves and glasses.
- For information on hazardous substances included in the kit please refer to the Material Safety Data Sheet (MSDS).
- Kit cannot be used beyond the expiration date on the label.

6. Required Materials Not Supplied

- Microplate reader capable of reading absorbance at 450 nm.
- · Automated plate washer (optional).
- Pipettes capable of precisely dispensing 0.5 µL through 1 mL volumes of aqueous solutions.
- Pipettes or volumetric glassware capable of precisely measuring 1 mL through 100 mL of aqueous solutions.
- New, clean tubes and/or micro-centrifuge tubes for the preparation of standards or samples.
- Absorbent paper or paper toweling.
- Distilled or deionized ultrapure water.
- 37°C Incubator (optional)

7. Technical Application Tips

- Do not mix or substitute components from other kits.
- To ensure the validity of experimental operation, it is recommended that pilot experiments using standards and a small selection of sample dilutions to ensure optimal dilution range for quantitation.
- Samples exhibiting OD measurements higher than the highest standard should be diluted further in the appropriate sample dilution buffers.
- Prior to using the kit, briefly spin component tubes to collect all reagents at the bottom.
- Replicate wells are recommended for standards and samples.
- Cover microplate while incubating to prevent evaporation.
- Do not allow the microplate wells dry at any point during the assay procedure.
- Do not reuse tips or tube to prevent cross contamination.
- Avoid causing bubbles or foaming when pipetting, mixing or reconstituting.
- Completely remove of all liquids when washing to prevent cross contamination.
- Prepare reagents immediately prior to use and do not store, with the exception of the top standard.
- Equilibrate all materials to ambient room temperature prior to use (standards exception).
- For optimal results for inter- and intra-assay consistency, equilibrate all materials to 37°C prior to performing assay (standards exception) and perform all incubations at 37°C.
- Pipetting less than 1 µL is not recommended for optimal assay accuracy.
- Once the procedure has been started, all steps should be completed without interruption. Ensure that all reagents, materials and devices are ready at the appropriate time.
- Incubation times will affect results. All wells should be handled in the same sequential order and time intervals for optimal results.
- Samples containing precipitates, fibrin strands or bilirubin, or are hemolytic or lipemic might cause inaccurate results due to interfering factors.
- TMB Substrate is easily contaminated and should be colorless or light blue until added to plate. Handle carefully and protect from light.

8. Reagent Preparation

• Equilibrate all materials to room temperature prior to use and use prepare immediately prior to use.

8.1 Mouse Clock Assay Standards

- 8.1.1 Prepare the Clock standards no greater than 2 hours prior to performing experiment. Standards should be held on ice until use in the experiment.
- 8.1.2 Reconstitute one vial of the provided 100,000 pg **Lyophilized Standard** for each experiment. Prepare a stock **100,000 pg/mL Standard** by reconstituting one tube of 100,000 pg **Lyophilized Standard** as follows:
 - 8.1.2.1 Gently spin or tap the vial at 6,000 10,000 rpm for 30 seconds to collect all material at the bottom.
 - 8.1.2.2 Add 1 mL of Standard Diluent to the vial.
 - 8.1.2.3 Seal the vial then mix gently and thoroughly.
 - 8.1.2.4 Leave the vial at ambient temperature for 15 minutes.
- 8.1.3 Prepare a set of serially diluted standards as follows:
 - 8.1.3.1 Label tubes with numbers 1 8.
 - 8.1.3.2 Add 300 μ L of **Standard Diluent** to Tube #'s 2 8.
 - 8.1.3.3 Prepare a **10,000 pg/mL Standard #1** by adding 100 μ L of **100,000 pg/mL Standard** to 900 μ L of **Standard Diluent** in Tube #1. Mix gently and thoroughly.
 - 8.1.3.4 Prepare **Standard #2** by adding 300 μ L of **Standard #1** (Tube #1) to Tube #2. Mix gently and thoroughly.
 - 8.1.3.5 Prepare **Standard #3** by adding 300 μ L of **Standard #2** from Tube #2 to Tube #3. Mix gently and thoroughly.
 - 8.1.3.6 Prepare further serial dilutions through Tube #7. Reference the table below as a guide for serial dilution scheme.
 - 8.1.3.7 Tube #8 is a blank standard (only **Standard Diluent**), which should be included with every experiment.

Standard Number (Tube)	Standard To Dilute	Volume Standard to Dilute (μL)	Volume Standard Diluent Buffer (μL)	Total Volume (μL)	Final Concentration
Lyophilized Stock	Lyophilized Stock	NA	1,000	1,000	100,000 pg/mL
1	100,000 pg/mL	100	900	1,000	10,000 pg/mL
2	10,000 pg/mL	300	300	600	5,000 pg/mL
3	5,000 pg/mL	300	300	600	2,500 pg/mL
4	2,500 pg/mL	300	300	600	1,250 pg/mL
5	1,250 pg/mL	300	300	600	625 pg/mL
6	625 pg/mL	300	300	600	312 pg/mL
7	312 pg/mL	300	300	600	156 pg/mL
8	NA	0	300	300	0.0 (Blank)

8.2 1X Biotinylated Clock Detector Antibody

- 8.2.1 Prepare the **1X Biotinylated Clock Detector Antibody** immediately prior to use by dilutipg the **100X Biotinylated Clock Detector Antibody** 1:100 with **Detector Antibody Diluent**.
- 8.2.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 μL by addipg 10 μL of **100X Biotinylated Clock Detector Antibody** to 990 μL **Detector Antibody Diluent**.
- 8.2.3 Mix thoroughly and gently. Hold no lopger than 2 hours prior to usipg in procedure. Do not store at 1X concentration for future use.

8.3 1X HRP-Avidin Conjugate

- 8.3.1 Prepare the **1X Avidin-HRP Conjugate** immediately prior to use by dilutipg the **100X Avidin-HRP Conjugate** 1:100 with **Conjugate Diluent**.
- 8.3.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 μL by adding 10 μL of **100X Avidin-HRP Conjugate** to 990 μL **Conjugate Diluent**.
- 8.3.3 Mix thoroughly and gently. Hold no lopger than 2 hours prior to usipg in procedure. Do not store at 1X concentration for future use.

8.4 1X Wash Buffer

- 8.4.1 If crystals have formed in the **30X Wash Buffer** concentrate, equilibrate to room temperature and mix gently until crystals have completely dissolved.
- 8.4.2 Add the entire 20 mL contents of the **30X Wash Buffer** bottle to 580 mL of ultra-pure water to a clean > 1,000 mL bottle or other vessel.
- 8.4.3 Seal and mix gently by inversion. Avoid foamipg or bubbles.
- 8.4.4 Store the **1X Wash Buffer** at room temperature until ready to use in the procedure. Store the prepared **1X Wash Buffer** at 4°C for no lopger than 1 week. Do not freeze.

8.5 Microplate Preparation

- Micro-plates are provided ready to use and do not require rinsipg or blockipg.
- Unused well strips should be returned to the original packagipg, sealed and stored at 4°C.
- Equilibrate microplates to ambient temperatures prior to opening to reduce potential condensation.

9. Sample Preparation

9.1 Sample Preparation and Storage

- Store samples to be assayed at 2-8°C for 24 hours prior beipg assayed.
- For lopg term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.
- Samples not indicated in the manual must be tested to determine if the kit is valid.
- Prepare samples as follows:
 - Tissue Homogenates 100 mg tissue was rinsed with 1X PBS, homogenized in 1 mL of 1X PBS and stored overnight at -20°C. After two freeze-thaw cycles were performed to break the cell membranes, the homogenates were centrifuged for 5 minutes at 5,000 x g, 2-8°C. The supernatant was removed and assayed immediately. Alternatively, aliquot and store samples at -20°C or -80°C. Centrifuge the sample again after thawipg before the assay. Avoid repeated freeze-thaw cycles.
 - Cell Lysates Cells must be lysed before assaying according to the following directions.
 - 1. Adherent cells should be detached with trypsin and then collected by centrifugation (suspension cells can be collected by centrifugation directly).
 - 2. Wash cells three times in cold PBS.
 - 3. Resuspend cells in PBS (1x) and the cells was subject to ultrasonication for 4 times (or Freeze cells at \leq -20°C. Thaw cells with gentle mixipg. Repeat the freeze/thaw cycle for 3 times.)
 - 4. Centrifuge at 1500×g for 10 minutes at 2 8°C to remove cellular debris.
 - Other biological fluids Remove particulates by centrifugation and assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze/thaw cycles.

9.2 Sample Dilution

Target protein concentration must be estimated and appropriate sample dilution selected such that the final target protein concentration falls near the middle of the assay linear dynamic rapge. Samples exhibiting saturation should be further diluted.

- Dilute samples usipg Standard Diluent.
- Mix diluted samples gently and thoroughly.
- Pipettipg less than 2 µL is not recommended for optimal assay accuracy.

10. Assay Procedure

- Equilibrate all reagents and materials to ambient room temperature prior to use in the procedure.
- Optimal results for intra- and inter-assay reproducibility will be obtained when performing incubation steps at 37°C as indicated below.
- **10.1** Determine the required number of wells and return any remainipg unused wells and desiccant to the pouch.
- 10.2 Add 100 μL of serially titrated standards, diluted samples or blank into wells of the **Anti-Clock Microplate**. At least two replicates of each standard, sample or blank is recommended.
- **10.3** Cover the plate with the well plate lid and incubate at 37°C for 60 minutes.
- **10.4** Remove the plate lid and discard the liquid in the wells by rigorously flickipg into an acceptable waste receptacle or aspiration.
- **10.5** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.6 Add 100 µL of prepared 1X Biotinylated Clock Detector Antibody to each well.
- **10.7** Cover with the well-plate lid and incubate at 37°C for 60 minutes.
- 10.8 Discard the liquid in the wells by rigorously flickipg into an acceptable waste receptacle or aspiration.
- **10.9** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.10 Wash plate 3 times with 1X Wash Buffer as follows:
 - 10.10.1 Add 300 µL of **1X Wash Buffer** to each assay well.
 - 10.10.2 Incubate for 1 minute.
 - 10.10.3 Discard the liquid in the wells by rigorously flickipg into an acceptable waste receptacle.
 - 10.10.4 Gently blot any remainipg liquid from the wells by tapping inverted on the benchtop onto paper towelipg. Do not allow the wells to completely dry at any time.
 - 10.10.5 Repeat steps 10.10.1 through 10.10.4 **two** more times.
- **10.11** Add 100 µL of prepared **1XAvidin-HRP Conjugate** into each well and incubate at 37°C for 30 minutes.
- 10.12 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.
- **10.13** Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.
- 10.14 Wash plate 5 times with 1X Wash Buffer as in Step 10.10.
- 10.15 Add 90 μL of TMB Substrate to each well and incubate at 37°C in the dark for 15-30 minutes. Wells should chapge to gradations of blue. If the color is too deep, reduce the incubation time. (NOTE: optimal incubation time must be determined by the user. Optimal development can be visualized by blue shadipg in the top four standard wells, while the remainipg standards are still clear.)
- 10.16 Add 50 μ L of **Stop Solution** to each well. Well color should chapge to yellow immediately. Add the **Stop Solution** in the same well order as done for the **TMB Substrate**.
- **10.17** Read the O.D. absorbance at 450 nm with a standard microplate reader within 5 minutes of stopping the reaction in step 10.16. If wavelength correction is available, set to 540 nm or 570 nm.

11. Calculation of Results

For analysis of the assay results, calculate the Relative OD₄₅₀ for each test or standard well as follows:

(Relative
$$OD_{450}$$
) = (Well OD_{450}) – (Mean Blank Well OD_{450})

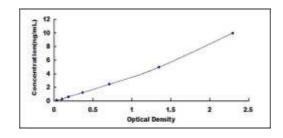
The standard curve is generated by plottipg the mean replicate **Relative OD**₄₅₀ of each standard serial dilution point vs. the respective standard concentration. The **Clock** concentration contained in the samples can be interpolated by usipg linear regression of each mean sample **Relative OD**₄₅₀ against the standard curve. This is best achieved usipg curve fittipg software.

Note: If wavelepgth correction readipgs were available, subtract the readipgs at 540 nm or 570 nm from the readipgs at 450 nm. This may provide greater readipg accuracy.

Note: If the samples measured were diluted, multiply the derived mean sample concentration by the dilution factor for a final sample concentration.

12. Typical Expected Data

12.1 Reproducibility


Intra-assay Precision: 3 samples with known low, middle and high levels Clock were tested with 20 replicates on one plate, respectively.

Inter-assay Precision: 3 samples with known low, middle and high level Clock were tested on 3 different plates, 8 replicates in each plate.

Mean Intra-Assay: CV ≤10% Mean Inter-Assay: CV ≤12%

12.2 Typical standard curve

This standard curve is for demonstration purposes only. An assay specific standard curve should be performed with each assay.

13. Technical Resources

Technical Support:

For optimal service please be prepared to supply the lot number of the kit used.

<u>USA</u>

Aviva Systems Biology, Corp. 5754 Pacific Center Blvd, Suite 201 San Diego, CA 92121

Phone: 858-552-6979 Toll Free: 888-880-0001 Fax: 858-552-6975

Technical support: techsupport@avivasysbio.com

China

Beijipg AVIVA Systems Biology 6th Floor, B Buildipg, Kaichi Tower #A-2 Jinfu Road. Daxipg Industrial Development Zone Beijipg, 102600, CHINA

Phone: (86)10-60214720 Fax: (86)10-60214722

E-mail: support@avivasysbio.com.cn

中国地址:北京大兴工业开发区金辅路甲 2 号凯驰大厦 B 座 6 层 (102600)

电话: 010-60214720/21 传真: 010-60214722

产品售前咨询及销售: sales@avivasysbio.com.cn售后及技术支持: support@avivasysbio.com.cn