

Nfkb1 Chemi-Luminescent ELISA Kit (Rat) (OKCD03825) Instructions for use

For the quantitative measurement of Nfkb1 in tissue homogenates, cell lysates and other biological fluids.

This product is intended for research use only.

Lot to lot kit variations can occur. Refer to the manual which has been provided with the kit.

Contents

1.	Background	2
2.	Assay Summary	3
3.	Storage and Stability	3
4.	Kit Components	3
5.	Precautions	4
6.	Required Materials Not Supplied	4
7.	Technical Application Tips	4
8.	Reagent Preparation	5
9.	Sample Preparation	7
	Assay Procedure	
11.	Calculation of Results	9
12.	Typical Expected Data	9
	Technical Resources	

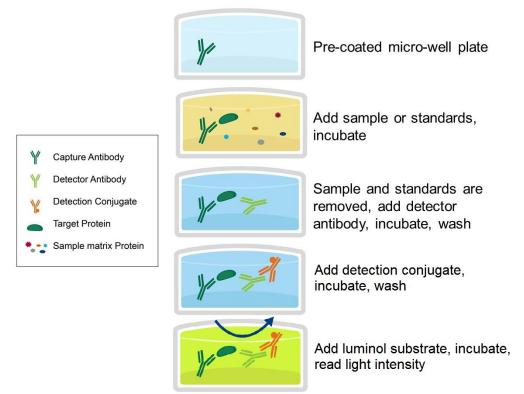
1. Background

Principle

Aviva Systems Biology Nfkb1 Chemi-Luminescent ELISA Kit (Rat) (OKCD03825) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific for Nfkb1 has been pre-coated onto a 96-wellplate (12 x 8 Well Strips). Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for Nfkb1 is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of a luminol substrate which is catalyzed by the HRP to produce light emission. The light emission is read by a luminometer (or photo-multiplier equipped instrument) and the intensity of the emitted light is proportional to the amount of sample Nfkb1 captured in well.

Background

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65. RELB. NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NFkappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. Plays a role in the regulation of apoptosis. Isoform 5, isoform 6 and isoform 7 act as inhibitors of transactivation of p50 NF-kappa-B subunit, probably by sequestering it in the cytoplasm. Isoform 3 (p98) (but not p84 or p105) acts as a transactivator of NF-kappa-B-regulated gene expression. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105.



General Specifications

General Specifications						
Range	0.312 - 20 ng/mL					
LOD	< 0.117 ng/mL (Derived by linear regression of OD ₄₅₀ of the Mean Blank + 2xSD)					
Specificity	Rat Nuclear factor NF-kappa-B p105 subunit <u>UniProt ID</u> : Q63369 <u>GeneID</u> : 81736 <u>Target Alias</u> : DNA-binding factor KBF1, EBP-1, Nuclear factor NF-kappa-B p105 subunit, Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1					
Cross-Reactivity	No detectable cross-reactivity with other relevant proteins					

2. Assay Summary

3. Storage and Stability

• Upon receipt store kit at 4°C for 1 month or -20°C for 6 months, noted exceptions below. Do not use past expiration date.

4. Kit Components

•The following reagents are the provided contents of the kit.

Description	Quantity	Storage Conditions	
Anti-Nfkb1 Microplate	96 Wells (12 x 8 Well strips)	4°C for 1	
Nfkb1 Lyophilized Standard	2 x 20 ng	Month or	
100X Biotinylated Nfkb1 Detector Antibody	1 x 120 μL	-20°C for 6	
100X Avidin-HRP Conjugate	1 x 120 μL	Months	
Standard Diluent	1 x 20 mL	4°C for 6	
Detector Antibody Diluent	1 x 12 mL		
Conjugate Diluent	1 x 12 mL		
30X Wash Buffer	1 x 20 mL	Month	
100X Luminol Substrate	1 x 2 mL		
Substrate Diluent	1 x 20 mL		

5. Precautions

· Read instructions fully prior to beginning use of the assay kit.