

SNAT1 ELISA Kit (Human) (OKDD00536)

Instruction for Use

For the quantitative measurement of SNAT1 in serum, plasma, tissue homogenates, cell lysates.

This product is intended for research use only.

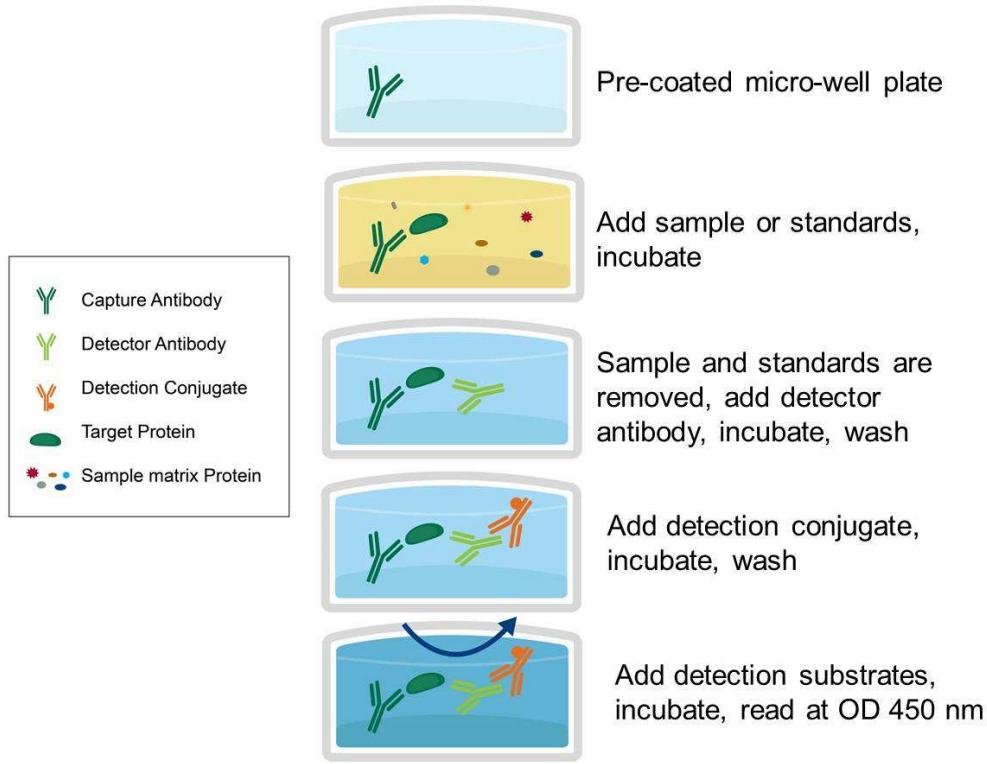
Table of Contents

1. Background	2
2. Assay Summary	2
3. Precautions	4
4. Storage and Stability	3
5. Kit Components.....	3
6. Required Materials Not Supplied	4
7. Technical Application Tips.....	4
8. Reagent Preparation	5
9. Sample Preparation.....	7
10. Assay Procedure	8
11. Calculation of Results.....	9
12. Typical Expected Data	9
13. Technical Resources.....	10

1. Background

Principle

Aviva Systems Biology SNAT1 ELISA Kit (Human) (OKDD00536) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody for SNAT1 has been pre-coated onto a 96-wellplate (12 x 8 Well Strips). Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for SNAT1 is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of TMB substrate which is catalyzed by HRP generating a blue color product that changes yellow after adding acidic stop solution. The density of yellow coloration is read by absorbance at 450 nm and is quantitatively proportional to the amount of sample SNAT1 captured in well.


Target Background

Amino acid transporters play essential roles in the uptake of nutrients, production of energy, chemical metabolism, detoxification, and neurotransmitter cycling. SLC38A1 is an important transporter of glutamine, an intermediate in the detoxification of ammonia and the production of urea. Glutamine serves as a precursor for the synaptic transmitter, glutamate (Gu et al., 2001 [PubMed 11325958]).

General Specifications

General Specifications	
Range	0.156 – 10 ng/mL
LOD	<0.055 ng/mL (Derived by linear regression of OD ₄₅₀ of the Mean Blank + 2xSD)
Specificity	Human SNAT1 UniProt ID: Q9H2H9 GeneID: 81539 Target Alias: ATA1, NAT2, SAT1, SNAT1
Cross-Reactivity	This assay has high sensitivity and excellent specificity for detection of SNAT1. No significant cross-reactivity or interference between SNAT1 and analogues was observed.

2. Assay Summary

3. Storage and Stability

- Upon receipt store kit at 4°C for 1 month or -20°C for long term storage (exceptions noted below). Avoid any freeze/thaw cycles.

4. Kit Components

- The following reagents are the provided contents of the kit.

Description	Quantity	Storage Conditions
Anti-SNAT1 Microplate	96 Wells (12 x 8 Well strips)	
SNAT1 Lyophilized Standard	2 x 10 ng	
100X Biotinylated SNAT1 Detector Antibody	1 x 120 µL	4°C for 6 months
100X Avidin-HRP Conjugate	1 x 120 µL	-20°C for 12 months
Standard Diluent	1 x 20 mL	
Detector Antibody Diluent	1 x 12 mL	
Conjugate Diluent	1 x 12 mL	
30X Wash Buffer	1 x 20 mL	
Stop Solution	1 x 6 mL	Store at 4°C
TMB Substrate	1 x 9 mL	

5. Precautions

- Read instructions fully prior to beginning use of the assay kit.
- Any deviations or modifications from the described method or use of other reagents could result in a reduction of performance.
- Reduce exposure to potentially harmful substances by wearing personal protective lab equipment including lab coats, gloves and glasses.
- For information on hazardous substances included in the kit please refer to the Material Safety Data Sheet (MSDS).
- Kit cannot be used beyond the expiration date on the label.

6. Required Materials Not Supplied

- Microplate reader capable of reading absorbance at 450 nm.
- Automated plate washer (optional).
- Pipettes capable of precisely dispensing 0.5 μ L through 1 mL volumes of aqueous solutions.
- Pipettes or volumetric glassware capable of precisely measuring 1 mL through 100 mL of aqueous solutions.
- New, clean tubes and/or micro-centrifuge tubes for the preparation of standards or samples.
- Absorbent paper or paper toweling.
- Distilled or deionized ultrapure water.
- 37°C Incubator (optional)

7. Technical Application Tips

- Do not mix or substitute components from other kits.
- To ensure the validity of experimental operation, it is recommended that pilot experiments using standards and a small selection of sample dilutions to ensure optimal dilution range for quantitation.
- Samples exhibiting OD measurements higher than the highest standard should be diluted further in the appropriate sample dilution buffers.
- Prior to using the kit, briefly spin component tubes to collect all reagents at the bottom.
- Replicate wells are recommended for standards and samples.
- Cover microplate while incubating to prevent evaporation.
- Do not allow the microplate wells dry at any point during the assay procedure.
- Do not reuse tips or tube to prevent cross contamination.
- Avoid causing bubbles or foaming when pipetting, mixing or reconstituting.
- Completely remove of all liquids when washing to prevent cross contamination.
- Prepare reagents immediately prior to use and do not store, with the exception of the top standard.
- Equilibrate all materials to ambient room temperature prior to use (standards exception).
- For optimal results for inter- and intra-assay consistency, equilibrate all materials to 37°C prior to performing assay (standards exception) and perform all incubations at 37°C.
- Pipetting less than 1 μ L is not recommended for optimal assay accuracy.
- Once the procedure has been started, all steps should be completed without interruption. Ensure that all reagents, materials and devices are ready at the appropriate time.
- Incubation times will affect results. All wells should be handled in the same sequential order and time intervals for optimal results.
- Samples containing precipitates, fibrin strands or bilirubin, or are hemolytic or lipemic might cause inaccurate results due to interfering factors.
- TMB Substrate is easily contaminated and should be colorless or light blue until added to plate. Handle carefully and protect from light.

8. Reagent Preparation

- Equilibrate all materials to room temperature prior to use and use prepare immediately prior to use.

8.1 Human SNAT1 Assay Standards

8.1.1 Prepare the SNAT1 standards no greater than 2 hours prior to performing experiment. Standards should be held on ice until use in the experiment.

8.1.2 Reconstitute one vial of the provided 10 ng **Lyophilized SNAT1 Standard** for each experiment. Prepare the stock 10,000 pg/mL Standard by reconstituting one tube of **Lyophilized SNAT1 Standard** as follows:

- Gently spin or tap the vial at 6,000 – 10,000 rpm for 30 seconds to collect all material at the bottom.
- Add 1 mL of **Standard Diluent** to the vial.
- Seal the vial then mix gently and thoroughly.
- Leave the vial at ambient temperature for 15 minutes.

8.1.3 Prepare a set of seven serially diluted standards as follows:

- Label tubes with numbers 2 – 8.
- Use the undiluted 10,000 pg/mL **SNAT1 Standard** as the high standard point (Tube #1).
- Add 300 μ L of **Standard Diluent** to Tube #'s 2 – 8.
- Prepare **Standard #2** by adding 300 μ L of 10,000 pg/mL **SNAT1 Standard** (Tube #1) to Tube #2. Mix gently and thoroughly.
- Prepare **Standard #3** by adding 300 μ L of **Standard #2** from Tube #2 to Tube #3. Mix gently and thoroughly.
- Prepare further serial dilutions through Tube #7. Reference the table below as a guide for serial dilution scheme.
- Tube #8 is a blank standard (only **Standard Diluent**), which should be included with every experiment.

Standard Number (Tube)	Standard To Dilute	Volume Standard to Dilute (μ L)	Volume Standard Diluent (μ L)	Total Volume (μ L)	Final Concentration
1	10,000 pg/mL Reconstituted SNAT1 Standard	1,000	NA	NA	10,000 pg/mL
2	10,000 pg/mL	300	300	600	5,000 pg/mL
3	5,000 pg/mL	300	300	600	2,500 pg/mL
4	2,500 pg/mL	300	300	600	1,250 pg/mL
5	1,250 pg/mL	300	300	600	625 pg/mL
6	625 pg/mL	300	300	600	312 pg/mL
7	312 pg/mL	300	300	600	156 pg/mL
8	NA	0	300	300	0.0 (Blank)

8.2 1X Biotinylated SNAT1 Detector Antibody

- 8.2.1 Prepare the **1X Biotinylated SNAT1 Detector Antibody** immediately prior to use by diluting the **100X Biotinylated SNAT1 Detector Antibody** 1:100 with **Detector Antibody Diluent**.
- 8.2.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 µL by adding 10 µL of **100X Biotinylated SNAT1 Detector Antibody** to 990 µL **Detector Antibody Diluent**.
- 8.2.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.3 1X HRP-Avidin Conjugate

- 8.3.1 Prepare the **1X Avidin-HRP Conjugate** immediately prior to use by diluting the **100X Avidin-HRP Conjugate** 1:100 with **Conjugate Diluent**.
- 8.3.2 For each well strip to be used in the experiment (8-wells) prepare 1,000 µL by adding 10 µL of **100X Avidin-HRP Conjugate** to 990 µL **Conjugate Diluent**.
- 8.3.3 Mix thoroughly and gently. Hold no longer than 2 hours prior to using in procedure. Do not store at 1X concentration for future use.

8.4 1X Wash Buffer

- 8.4.1 If crystals have formed in the **30X Wash Buffer** concentrate, equilibrate to room temperature and mix gently until crystals have completely dissolved.
- 8.4.2 Add the entire 20 mL contents of the **30X Wash Buffer** bottle to 580 mL of ultra-pure water to a clean > 1,000 mL bottle or other vessel.
- 8.4.3 Seal and mix gently by inversion. Avoid foaming or bubbles.
- 8.4.4 Store the **1X Wash Buffer** at room temperature until ready to use in the procedure. Store the prepared **1X Wash Buffer** at 4°C for no longer than 1 week. Do not freeze.

8.5 Microplate Preparation

- Micro-plates are provided ready to use and do not require rinsing or blocking.
- Unused well strips should be returned to the original packaging, sealed and stored at 4°C.
- Equilibrate microplates to ambient temperatures prior to opening to reduce potential condensation.

9. Sample Preparation

9.1 Sample Preparation and Storage

- Store samples to be assayed at 2-8°C for 24 hours prior being assayed.
- For long term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.
- Samples not indicated in the manual must be tested to determine if the kit is valid.
- Prepare samples as follows:
 - **Serum** - Use a serum separator tube (SST) and allow samples to clot for two hours at room temperature or overnight at 4°C before centrifugation for 15 minutes at 1,000 x g. Remove serum and assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
 - **Plasma** - Collect plasma using EDTA, or heparin as an anticoagulant. Centrifuge for 15 minutes at 1,000 x g at 2-8°C within 30 minutes of collection. Assay immediately or aliquot and store samples at -20°C or -80°C. Avoid repeated freeze-thaw cycles.
 - **Tissue Homogenates** – The preparation of tissue homogenates will vary depending upon tissue type. For this assay, tissues were rinsed in ice-cold PBS (0.01mol/L, pH 7.0-7.2) to remove excess blood thoroughly and weighed before homogenization. Minced the tissues to small pieces and homogenized them in 5-10 mL of PBS with a glass homogenizer on ice (Micro Tissue Grinders works, too). The resulting suspension was sonicated with an ultrasonic cell disrupter or subjected to two freeze-thaw cycles to further break the cell membranes. After that, the homogenates were centrifuged for 5 minutes at 5,000 x g. Remove the supernatant and assay immediately or aliquot and store at <-20°C.
 - **Cell Lysates** - Cells must be lysed before assaying according to the following directions.
 1. Adherent cells should be detached with trypsin and then collected by centrifugation (suspension cells can be collected by centrifugation directly).
 2. Wash cells three times in cold PBS.
 3. Resuspend cells in PBS (1X) and the cells was subject to ultra-sonication for 4 times (or Freeze cells at <-20°C. Thaw cells with gentle mixing. Repeat the freeze/thaw cycle for 3 times.)
 4. Centrifuge at 1500 x g for 10 minutes at 2-8°C to remove cellular debris.

9.2 Sample Dilution

Target protein concentration must be estimated and appropriate sample dilution selected such that the final target protein concentration falls near the middle of the assay linear dynamic range. Samples exhibiting saturation should be further diluted.

- Dilute samples using **Standard Diluent**.
- Mix diluted samples gently and thoroughly.
- Pipetting less than 2 µL is not recommended for optimal assay accuracy.

10. Assay Procedure

- Equilibrate all reagents and materials to ambient room temperature prior to use in the procedure.
- Optimal results for intra- and inter-assay reproducibility will be obtained when performing incubation steps at 37°C as indicated below.

10.1 Determine the required number of wells and return any remaining unused wells and desiccant to the pouch.

10.2 Add 100 µL of serially titrated standards, diluted samples or blank into wells of the Anti-SNAT1 Microplate. At least two replicates of each standard, sample or blank is recommended.

10.3 Cover the plate with the well plate lid and incubate at 37°C for 2 hours.

10.4 Remove the plate lid and discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.

10.5 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.

10.6 Add 100 µL of prepared **1X Biotinylated SNAT1 Detector Antibody** to each well.

10.7 Cover with the well-plate lid and incubate at 37°C for 60 minutes.

10.8 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.

10.9 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.

10.10 Wash plate 3 times with **1X Wash Buffer** as follows:

10.10.1 Add 350 µL of **1X Wash Buffer** to each assay well.

10.10.2 Incubate for 1 minute.

10.10.3 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle.

10.10.4 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.

10.10.5 Repeat steps 10.10.1 through 10.10.4 **two** more times.

10.11 Add 100 µL of prepared **1X Avidin-HRP Conjugate** into each well and incubate at 37°C for 60 minutes.

10.12 Discard the liquid in the wells by rigorously flicking into an acceptable waste receptacle or aspiration.

10.13 Gently blot any remaining liquid from the wells by tapping inverted on the benchtop onto paper toweling. Do not allow the wells to completely dry at any time.

10.14 Wash plate **5 times** with **1X Wash Buffer** as in Step 10.10.

10.15 Add 90 µL of **TMB Substrate** to each well and incubate in the dark at 37°C for 15-25 minutes. Wells should change to gradations of blue. If the color is too deep, reduce the incubation time.

(NOTE: optimal incubation time must be determined by the user. Optimal development can be visualized by blue shading in the top four standard wells, while the remaining standards are still clear.)

10.16 Add 50 µL of **Stop Solution** to each well. Well color should change to yellow immediately. Add the **Stop Solution** in the same well order as done for the **TMB Substrate**.

10.17 Read the O.D. absorbance at 450 nm with a standard microplate reader within 5 minutes of stopping the reaction in step 10.16. If wavelength correction is available, set to 540 nm or 570 nm.

11. Calculation of Results

For analysis of the assay results, calculate the **Relative OD₄₅₀** for each test or standard well as follows:

$$(\text{Relative OD}_{450}) = (\text{Well OD}_{450}) - (\text{Mean Blank Well OD}_{450})$$

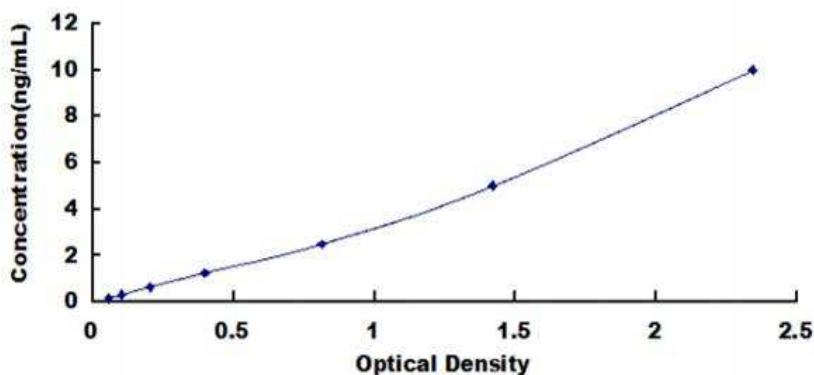
The standard curve is generated by plotting the mean replicate **Relative OD₄₅₀** of each standard serial dilution point vs. the respective standard concentration. The SNAT1 concentration contained in the samples can be interpolated by using linear regression of each mean sample **Relative OD₄₅₀** against the standard curve. This is best achieved using curve fitting software.

Note: If wavelength correction readings were available, subtract the readings at 540 nm or 570 nm from the readings at 450 nm. This may provide greater reading accuracy.

Note: If the samples measured were diluted, multiply the derived mean sample concentration by the dilution factor for a final sample concentration.

12. Typical Expected Data

12.1 Reproducibility


Intra-assay Precision (Precision within an assay): 3 samples with low, middle and high level SNAT1 were tested 20 times on one plate, respectively.

Inter-assay Precision (Precision between assays): 3 samples with low, middle and high level SNAT1 were tested on 3 different plates, 8 replicates in each plate.

Mean Intra-Assay: CV<10%

Mean Inter-Assay: CV<12%

12.2 Typical standard curve. This standard curve is for demonstration purposes only. An assay specific standard curve should be performed with each assay.

13. Technical Resources

Technical Support:

For optimal service please be prepared to supply the lot number of the kit used.

USA

Aviva Systems Biology, Corp.
5754 Pacific Center Blvd, Suite 201
San Diego, CA 92121

Phone: 858-552-6979
Toll Free: 888-880-0001
Fax: 858-552-6975

Technical support: techsupport@avivasysbio.com

China

Beijing AVIVA Systems Biology
6th Floor, B Building, Kaichi Tower
#A-2 Jinfu Road.
Daxing Industrial Development Zone
Beijing, 102600, CHINA

Phone: (86)10-60214720
Fax: (86)10-60214722
E-mail : support@avivasysbio.com.cn

中国地址: 北京大兴工业开发区金辅路甲 2 号凯驰大厦 B 座 6 层 (102600)
电话 : 010-60214720/21
传真 : 010-60214722

产品售前咨询及销售 : sales@avivasysbio.com.cn
售后及技术支持 : support@avivasysbio.com.cn