Revision date: 12/Sep/2018

Human Superoxide Dismutase 2, Mitochondrial (SOD2) ELISA Kit

Catalog No.: abx251501

Size: 96T

Range: 0.313 ng/ml - 20 ng/ml

Sensitivity: 0.188 ng/ml

Storage: Store the 96-well plate, Standards, HRP-conjugate reagent and Biotin-conjugated antibody at -20°C, and the rest of the kit

components at 4°C for up to 6 months.

Application: For quantitative detection of SOD2 in Human Serum, Plasma and other biological fluids.

Introduction: Superoxide dismutase 2, mitochondrial (SOD2), also known as manganese-dependent superoxide dismutase (MnSOD), is an enzyme which in humans is encoded by the SOD2 gene on chromosome 6. A related pseudogene has been identified on chromosome 1. Alternative splicing of this gene results in multiple transcript variants. This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature ageing, sporadic motor neuron disease, and cancer.

Principle of the Assay

This kit is based on a competitive enzyme-linked immuno-sorbent assay technology. SOD2 is pre-coated onto a 96-well plate. The standards, samples and a biotin conjugated antibody specific to SOD2 are added to the wells and incubated. After washing away the unbound conjugates, avidin conjugated to Horseradish Peroxidase is added to each microplate well. After TMB substrate solution is added only wells that contain SOD2 will produce a blue colour product that changes into yellow after adding the stop solution. The intensity of the yellow colour is inversely proportional to the SOD2 amount bound on the plate. The O.D. absorbance is measured spectrophotometrically at 450 nm in a microplate reader, and then the concentration of SOD2 can be calculated.

Kit components

- 1. One pre-coated 96-well microplate (12 × 8 well strips)
- 2. Standard: 2 vials
- 3. Sample/Standard Diluent Buffer: 20 ml 4. Biotin conjugated antibody (100X): 120 µl
- 5. Antibody diluent buffer: 12 ml
- 6. HRP-conjugate reagent (100X): 120 µl
- 7. HRP diluent buffer: 12 ml8. TMB substrate reagent: 10 ml
- 9. Stop solution: 10 ml10. Wash buffer (25X): 30 ml11. Plate sealer: 5 pieces

Material Required But Not Provided

- 1. 37°C incubator
- 2. Microplate reader (wavelength: 450 nm)
- 3. Multi and single channel pipettes and sterile pipette tips
- 4. Squirt bottle or automated microplate washer
- 5. ELISA shaker
- 6. 1.5 ml tubes to prepare standard/sample dilutions
- 7. Distilled or deionized water
- 8. Absorbent filter papers
- 9. 100 ml and 1 liter graduated cylinders

Revision date: 12/Sep/2018

Protocol

A. Preparation of sample and reagents

1. Sample

Store samples to be assayed within 24 hours at 2-8°C. Alternatively, aliquot and store at -20°C or -80°C for long term. Avoid repeated freeze-thaw cycles.

- **Serum:** Samples should be collected into a serum separator tube. Coagulate the serum by leaving the tube undisturbed in a vertical position overnight at 4°C or at room temperature for up to 60 minutes. Centrifuge at approximately 1000 × g for 20 min. Analyze the serum immediately or aliquot and store at -20°C or -80°C.
- Plasma: Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store at -20°C. Avoid hemolysis and high cholesterol samples.
- Other biological fluids: Centrifuge at approximately 1000 × g for 20 min to remove precipitant. Analyze immediately or aliquot and store at -20°C or -80°C.

Note:

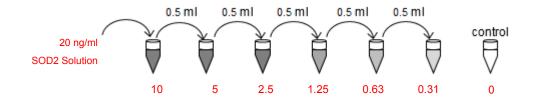
- » Fresh samples or recently obtained samples are recommended to prevent degradation and denaturalization that may lead to erroneous results. It is recommended to store samples to be used within 5 days at 4°C, within 1 month at -20°C and within 2 months at -80°C.
- » Samples should be clear and transparent. Samples must be diluted so that the expected concentration falls within the kit's range.
- » Please bring sample slowly to room temperature. Sample hemolysis will influence the result. Hemolyzed specimen should not be used. Samples that contain NaN₃ cannot be detected as it interferes with HRP.
- » Always use non-pyrogenic, endotoxin-free tubes for blood collection.

Sample dilution guideline:

Estimate the concentration of the target in the sample and select the correct dilution factor to make the diluted target concentration fall near the middle of the kit's range. Generally, for high concentration (200 ng/ml - 2000 ng/ml), dilute 100-fold (1/100), for medium concentration (20 ng/ml - 200 ng/ml), dilute 10-fold (1/10) and for low concentration (0.313 ng/ml - 20 ng/ml), dilute 2-fold (1/2). Very low concentrations (≤ 0.313 ng/ml) do not need dilution. Dilute the sample with the provided Sample Diluent Buffer and mix thoroughly. Several trials may be necessary to determine the optimal dilution factor.

2. Wash buffer

Dilute the concentrated Wash buffer 30-fold (1/30) with distilled water (i.e. add 25 ml of concentrated wash buffer into 725 ml of distilled water).


3. Standard

Preparation of the SOD2 standard: standard solution should be prepared no more than 15 min prior to the experiment. Centrifuge at 10,000×g for 1 minute as the powder may drop off from the cap when opening if you do not spin down. (Note: Do not dilute the standard directly in the plate). Once your standard has been reconstituted, it should be used right away. We do not recommend reusing the reconstituted standard.

- a.) 20 ng/ml standard solution. Add 1 ml of Sample/Standard diluent buffer into one Standard tube. Allow the reconstituted standard to sit for 15 minutes with gentle agitation prior to carrying out the serial dilutions; avoiding foaming or bubbles.
- b.) 10 ng/ml \rightarrow 0.3125 ng/ml standard solutions: Label 6 tubes with 10 ng/ml, 5 ng/ml, 2.5 ng/ml, 1.25 ng/ml, 0.625 ng/ml and 0.3125 ng/ml. Aliquot 0.5 ml of the Sample / Standard diluent buffer into each tube. Add 0.5 ml of the above 20 ng/ml standard solution into 1st tube and mix thoroughly. Transfer 0.5 ml from 1st tube to 2nd tube and mix thoroughly, and so on.

Revision date: 12/Sep/2018

Note: Do not vortex the standard during reconstitution, as this will destabilize the protein. Once your standard has been reconstituted, it should be used right away. We do not recommend reusing the reconstituted standard. Please use the diluted Standards for a single assay procedure and discard after use.

- 4. Preparation of Biotin Detection Reagent working solution: prepare no more than 1 hour before the experiment.
- a.) Calculate the total volume of the working solution: 0.05 ml / well × quantity of wells. (Allow 0.1-0.2 ml more than the total volume).
- b.) Dilute the Biotin Detection Reagent with Detection Reagent diluent buffer at 1/100 and mix thoroughly. i.e. Add 1 μl of Biotin Detection Reagent into 99 μl of Detection Reagent diluent buffer. Discard after use.
- 5. Preparation of HRP Conjugated Reagent working solution: prepare no more than 30 min. before the experiment
- a.) Calculate the total volume of the working solution: 0.1 ml / well × quantity of wells. (Allow 0.1-0.2 ml more than the total volume).
- b.) Dilute the HRP Conjugate Reagent with HRP diluent buffer at 1/100 and mix thoroughly. i.e. Add 1 µl of HRP Conjugate Reagent into 99 µl of HRP diluent buffer. Discard after use.

B. Assay Procedure

Equilibrate the kit components and samples to room temperature before use. It is recommended to plot a standard curve for each test.

- Set standard, test sample and control (zero) wells on the pre-coated plate and record their positions. It is recommended
 to measure each standard and sample in duplicate. Add the solution at the bottom of each well without touching the
 side walls.
- 2. Add 50 μl of the prepared standards solutions into the standard wells. Add 50 μl of Sample / Standard diluent buffer into the control (zero) wells.
- 3. Add 50 µl of appropriately diluted sample into test sample wells.
- 4. Immediately add 50 µl of Biotin conjugated antibody working solution into each well. Add the solution at the bottom of each well without touching the side wall.
- 5. Cover the plate with the plate sealer. Gently tap the plate to mix thoroughly. Incubate at 37°C for 45 minutes.
- 6. Remove the cover and discard the solution. Wash the plate 3 times with 1X Wash Buffer. Fill each well completely with Wash buffer (350 µl) using a multi-channel pipette or autowasher (1-2 minute soaking period is recommended). Complete removal of liquid at each step is essential for good performance. After the final wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean absorbent paper towels.
- Add 100 μl of HRP-conjugate working solution into each well.Cover the plate with a new sealer and incubate at 37°C for 30 minutes.
- 8. Remove the cover, discard the liquid and wash the plate 5 times with Wash buffer as explained in step 7.
- 9. Add 90 µl of TMB substrate into each well. Cover the plate and incubate at 37°C in dark conditions for 15-20 minutes (incubation time is for reference only, do not exceed 30 minutes). When an apparent gradient appears in the standard wells the reaction can be terminated.

Revision date: 12/Sep/2018

abbexa 🌕

10. Add 50 μ l of Stop solution into each well (including the blank well). There should be a colour change to yellow. Gently tap the

plate to ensure thorough mixing.

11. Ensure that there are no fingerprints or water on the bottom of the plate, and that the fluid in the wells is free of bubbles. Measure

the absorbance at 450 nm immediately.

This assay is competitive, therefore there is an inverse correlation between SOD2 concentration in the sample and the absorbance measured. Create a graph with the log of the standard concentration (y-axis) and absorbance measured (x-axis). Apply a best fit trendline through the standard points. Use this graph calculate sample concentrations based on their OD values. If samples have

been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

Note: If the samples measured were diluted, multiply the dilution factor by the concentrations from interpolation to obtain the

concentration before dilution.

C. Precautions

1. Equilibrate all reagents to room temperature (18-25°C) prior to use and centrifuge the tubes briefly in case any contents are

trapped in the lid.

2. For each step in the procedure, total dispensing time for addition of reagents to the assay plate should not exceed 10 minutes.

3. Wash buffer may crystallize and separate. If this happens, please warm the tube and mix gently to dissolve.

4. Avoid foaming or bubbles when mixing or reconstituting components.

5. It is recommended to assay all standards, controls and samples in duplicate or triplicate.

6. Do NOT let the plate dry out completely during the assay as this will inactivate the biological material on the plate.

7. Ensure plates are properly sealed or covered during incubation steps.

8. Complete removal of all solutions and buffers during wash steps is necessary for accurate measurement readings.

To avoid cross contamination do not reuse pipette tips and tubes.

10. Do not use components from a different kit or expired ones.

11. The TMB Substrate solution is easily contaminated; work under sterile conditions when handling the TMB substrate solution. The TMB Substrate solution should also be protected from light. Unreacted substrate should be colorless or very light yellow in

appearance. Aspirate the dosage needed with sterilized tips and do not dump the residual solution back into the vial.

D. Precision

Intra-assay Precision (Precision within an assay): 3 samples with low, medium and high levels of SOD2 were tested 20 times on one

plate, respectively.

Inter-assay Precision (Precision between assays): 3 samples with low, medium and high levels of SOD2 were tested on 3 different

plates, 8 replicates in each plate.

CV (%) = (Standard Deviation / mean) × 100

Intra-Assay CV: ≤ 10%

Inter-Assay CV: ≤ 10%

Abbexa Ltd., Cambridge Science Park, Cambridge, CB4 0EY, UK www.abbexa.com · Email: info@abbexa.com · Phone: +44 (0) 1223 755950 · Fax: +44 (0) 1223 755951 Registered in England: 8475531 · VAT Reg. No: GB 167 9240 79

Revision date: 12/Sep/2018

