Product Manual

CytoSelect[™] 24- Well Cell Migration Assay (5 µm, Fluorometric Format)

Catalog Number

CBA- 102	12 assays
CBA- 102- 5	5 x 12 assays

FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Introduction

Cell migration is a highly integrated, multistep process that orchestrates embryonic morphogenesis, tissue repair and regeneration. It plays a pivotal role in the disease progression of cancer, mental retardation, atherosclerosis, and arthritis. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of the attractant; these protrusions can consist of large, broad lamellipodia or spike-like filopodia. In either case, these protrusions are driven by actin polymerization and can be stabilized by extracellular matrix (ECM) adhesion or cell-cell interactions (via transmembrane receptors).

Cell Biolabs CytoSelectTM Cell Migration Assay Kit utilizes polycarbonate membrane inserts (5 μ m pore size) to assay the migratory properties of cells. The kit does not require you to prelabel the cells with Calcein AM or remove non-migratory cells (i.e. cotton swabbing). Any migratory cells are first dissociated from the membrane, then lysed and detected by the patented CyQuant® GR Dye (Invitrogen).

Cell Biolabs CytoSelectTM Cell Migration Assay Kit provides a robust system for the quantitative determination of cell migration. The kit contains sufficient reagents for the evaluation of 12 samples. The 5 μ m pore size is optimal for monocyte and macrophage cell migration. However, in the case of epithelial and fibroblast, a larger pore size (8 μ m) is recommended. For neutrophil chemotaxis, a smaller pore size (3 μ m) is recommended.

The CytoSelectTM Cell Migration Assay Kit contains PET membrane inserts (5 μ m pore size) in a 24well plate. The membrane serves as a barrier to discriminate migratory cells from non-migratory cells. Migratory cells are able to extend protrusions towards chemoattractants (via actin cytoskeleton reorganization) and ultimately pass through the pores of the polycarbonate membrane. These migratory cells are then dissociated from the membrane and subsequently detected by the patented CyQuant® GR Dye (Invitrogen).

Assay Principle

Related Products

- 1. CBA-100: CytoSelectTM 24-Well Cell Migration Assay (8µm, Colorimetric)
- 2. CBA-101: CytoSelect[™] 24-Well Cell Migration Assay (8µm, Fluorometric)
- 3. CBA-103: CytoSelect[™] 24-Well Cell Migration Assay (3µm, Fluorometric)
- 4. CBA-104: CytoSelectTM 96-Well Cell Migration Assay (3µm, Fluorometric)
- 5. CBA-105: CytoSelect[™] 96-Well Cell Migration Assay (5µm, Fluorometric)
- 6. CBA-106: CytoSelect[™] 96-Well Cell Migration Assay (8µm, Fluorometric)
- 7. CBA-107: CytoSelectTM 24-Well Cell Migration Assay (12 μm, Colorimetric)
- 8. CBA-108: CytoSelectTM 24-Well Cell Migration Assay, (12 μm, Fluorometric)
- 9. CBA-111: CytoSelectTM 24-Well Cell Invasion Assay (Basement Membrane, Fluorometric)

- 10. CBA-120: CytoSelectTM 24-Well Wound Healing Assay (Light Microscopy)
- 11. CBA-125: RadiusTM 24-Well Cell Migration Assay (Microscopy)
- 12. CBA-130: CytoSelectTM 96-Well Cell Transformation Assay (Soft Agar Colony Formation)

Kit Components

- <u>24-well Migration Plate</u> (Part No. 10201): One 24-well plate containing 12 cell culture inserts (5 μm pore size)
- 2. Cell Detachment Solution (Part No. 10403): One 20 mL bottle
- 3. <u>4X Lysis Buffer</u> (Part No. 10102): One 5 mL bottle
- 4. CyQuant® GR Dye (Part No. 10103): One 25 μL tube
- 5. Forceps (Part No. 11005): One each

Materials Not Supplied

- 1. Migratory cell lines
- 2. Cell culture medium
- 3. Serum free medium, such as DMEM containing 0.5% BSA, 2 mM CaCl₂ and 2 mM MgCl₂
- 4. Cell culture incubator (37°C, 5% CO₂ atmosphere)
- 5. Light microscope
- 6. 96-well plate suitable for a fluorescence plate reader
- 7. Fluorescence plate reader

Storage

Store all components at 4°C.

Assay Protocol

- 1. Under sterile conditions, allow the 24-well migration plate to warm up at room temperature for 10 minutes.
- 2. Prepare a cell suspension containing $0.5-5.0 \ge 10^6$ cells/ml in serum free media. Agents that inhibit or stimulate cell migration can be added directly to the cell suspension.
- 3. Add 0.5 mL of media containing 10% fetal bovine serum or desired chemoattractant(s) to the lower well of the migration plate.
- 4. Add 100 μ L of the cell suspension solution to the inside of each insert.
- 5. Incubate for 1-24 hours in a cell culture incubator.
- 6. Carefully aspirate the media from the inside of the insert. Transfer the insert to a clean well containing 400 μL of Cell Detachment Solution. Incubate 30 minutes at 37°C. *Note: Retain the medium in the 24-well migration plate that contains chemoattractant(s) and cells that migrated through the membrane and into the medium.*

- 7. Completely dislodge the cells from the underside of the membrane by gently tilting the insert several times in the detachment solution. Remove and discard the insert.
- 8. Transfer 400 μL of the 0.5 mL medium solution containing migratory cells (step 5) to the well that contains 400 μL of Cell Detachment Solution for the same migration assay sample (step 7). Mix well, transfer 180 μL of the mixture to a 96-well plate. *Note: This step combines cells that migrated through the membrane and into the medium, and migratory cells detached from the bottom side of the membrane by Cell Detachment Solution.*
- 9. Prepare sufficient 4X Lysis Buffer/CyQuant® GR dye solution for all samples by diluting the dye 1:75 in 4X Lysis Buffer (for example, add 5 μL dye to 370 μL of 4X Lysis Buffer).
- 10. Add 60 µL of 4X Lysis Buffer/CyQuant® GR dye solution to each well of the 96-well plate containing migratory cells. Incubate 20 minutes at room temperature.
- 11. Transfer 200 μ L of the mixture a 96-well plate suitable for fluorescence measurement. Read fluorescence with a fluorescence plate reader at 480 nm/520 nm.

Example of Results

The following figures demonstrate typical with the CytoSelect[™] Cell Migration Assay Kit. Fluorescence measurement was performed on SpectraMax Gemini XS Fluorometer (Molecular Devices) with a 485/538 nm filter set and 530 nm cutoff. One should use the data below for reference only. This data should not be used to interpret actual results.

Figure 1: **Quantitation of THP-1 Cells**. THP-1 cells were titrated in Cell Detachment Buffer, then subsequently lysed and detected with 4X Lysis Buffer/Cyquant® GR Dye (150 μ L cell suspension was mixed with 50 μ L of 4X Lysis Buffer/dye).

Figure 2. Human Monocytic THP-1 Chemotaxis. THP-1 cells were allowed to migrate toward MCP-1 for 2 hrs, 400,000 cells were used in each assay. Migratory cells were quantified by CyQuant® GR Dye as described in Assay Protocol.

References

- 1. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. (2003) *Science* **302**:1704-9.
- 2. Horwitz R, Webb D. (2003) Curr Biol. 13:R756-9.
- 3. Lauffenburger DA, Horwitz AF. (1996) Cell 84:359-369.

Recent Product Citations

- 1. Stranahan, A.M. et al. (2016). Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. *J. Cereb. Blood Flow Metab.* **36**:2108-2121.
- 2. Yu, Y. et al. (2016). Mesenchymal stem cells with Sirt1 overexpression suppress breast tumor growth via chemokine-dependent natural killer cells recruitment. *Sci. Rep.* 6:35998.
- 3. Lei, D. et al. (2016). Lentiviral delivery of small hairpin RNA targeting connective tissue growth factor blocks profibrotic signaling in Tenon's capsule fibroblasts. *Invest Ophthalmol Vis Sci.* 57:5171-5180.
- 4. Du, W. et al. (2016). Age-associated vascular inflammation promotes monocytosis during atherogenesis. *Aging Cell*. doi:10.1111/acel.12488.
- 5. Deng, B., & Feng. Y. (2015). TIPE2 mediates the suppressive effects of Shikonin on MMP13 in osteosarcoma cells. *Cell Physiol Biochem.* **37**:2434-2443.
- 6. Choi, B. et al. (2015). Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. *Cardiovasc Res.* doi: http://dx.doi.org/10.1093/cvr/cvv130.
- 7. Sa, Y. et al. (2015). TIMP-1 induces α-smooth muscle actin in fibroblasts to promote urethral scar formation. *Cell Physiol Biochem.* **35**:2233-2243.

- 8. Wu, W. et al. (2015). FBXL5 inhibits metastasis of gastric cancer through suppressing Snail1. *Cell Physiol Biochem.* **35**:1764-1772.
- 9. Liu, X. et al. (2015). MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. *Exp Cell Res.* doi: 10.1016/j.yexcr.2015.01.018.
- 10. Lee, Y. H. et al. (2014). Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation. *Cell Mol Immunol.* doi: 10.1038/cmi.2014.39.
- 11. Cizkova, D. et al. (2014). Modulation properties of factors released by bone marrow stromal cells on activated microglia: an in vitro study. *Sci Rep.* **4**:7514.
- 12. Jelacic, T.M., et al. (2014). Exposure to Bacillus anthracis capsule results in suppression of human monocyte-derived dendritic cells. *Infect Immun.* **82**:3405-3416.
- 13. Kiss, J. et al. (2012). Loss of the oxygen sensor PHD3 enhances the innate immune response to abdominal sepsis. *J. Immunol.* **189**:1955-1965.
- 14. Shynlova, O. et al. (2008). Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. *J. Immunol.* **181**:1470-1479.
- 15. Uddin, M. et al. (2008). Marinobufagenin inhibits proliferation and migration of cytotrophoblast and CHO cells. *Placenta* **29(3)**:266-273.

License Information

This product is provided under an intellectual property license from Life Technologies Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its component; (ii) to provide a service, information, or data in return for payment; (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad CA 92008 USA or outlicensing@lifetech.com.

Warranty

These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance with their instructions. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE. CELL BIOLABS' sole obligation and purchaser's exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products.

Contact Information

Cell Biolabs, Inc. 7758 Arjons Drive San Diego, CA 92126 Worldwide: +1 858-271-6500 USA Toll-Free: 1-888-CBL-0505 E-mail: <u>tech@cellbiolabs.com</u> www.cellbiolabs.com

©2004-2017: Cell Biolabs, Inc. - All rights reserved. No part of these works may be reproduced in any form without permissions in writing.

