

High Affinity Ni-Charged Resin FF

Cat No: L00666 Version 06222016

ī	Product Description	1
П	Purification Procedure	1
Ш	Troubleshooting	3
	Ordering Information	

I Product Description

GenScript High Affinity Ni-Charged Resin FF is an 6% highly cross-linked agarose medium covalently coupled to a chelating agent that binds Ni²⁺ by four coordination sites for high-affinity purification of polyhistidine-tagged recombinant proteins. High Affinity Ni-Charged Resin FF has low Ni²⁺ leakage, high protein-binding capacity and stability, and is compatible with a wide range of additives used in protein purification. This makes High Affinity Ni-Charged Resin FF the excellent choice for high performance purification of polyhistidine-tagged proteins.

Table 1. Characteristics of High Affinity Ni-Charged Resin FF

<u> </u>	. 3
Binding capacity	>40 mg of histidine-tagged protein /ml settled resin
Matrix spherical	6% highly cross-linked agarose
Average particle size	90 μm (45-165 μm)
Storage solution	20% ethanol
Storage & Stability	18 months when stored unopened at 2-8 °C

Table 2. Reagents Compatible with High Affinity Ni-Charged Resin FF

Denaturants	Detergents	Reducing agents	Salts	Others
6 M Gu·HCl	2% Triton X-100	20 mM β-ME	4 M MgCl ₂	50% glycerol
8 M Urea	2% Tween 20	1 mM DTT	5 mM CaCl ₂	20% ethanol
	1% CHAPS		2 M NaCl	1 mM EDTA

II Purification Procedure

Purification of polyhistidine-tagged proteins under native conditions

Buffer Preparation

Water and chemicals used for buffer preparation should be of high purity. It is recommended filtering the buffers by passing them through a $0.45 \mu m$ filter before use.

Lysis Equilibration Buffer (LE buffer): 50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0

Wash Buffer: $50 \text{ mM NaH}_2\text{PO}_4$, 300 mM NaCl, 10 mM imidazole, pH $8.0 \text{ Elution buffer: } 50 \text{ mM NaH}_2\text{PO}_4$, 300 mM NaCl, 250 mM imidazole, pH $8.0 \text{ mM NaH}_2\text{PO}_4$, 300 mM NaCl, 250 mM imidazole, pH 8.0 mM imidazole, pH $8.0 \text{ mM imidazol$

Sample Preparation

- 1. For protein expressed in *E. coli* or yeast cytoplasm.
 - 1) Harvest cells from a 50 ml culture by centrifugation at 4 °C (e.g., 5,000 rpm for five minutes in a Sorvall SS-34 rotor).
 - 2) Resuspend the cells in 8 ml of LE buffer with appropriate amount of PMSF or other protease inhibitors added. **Note:** The inhibitors must have no effect on the ability of the Ni²⁺ resin.
 - 3) Sonicate the solution on ice using one-second bursts at high intensity with a three-second cooling period. Total sonication time is about 30 to 45 min.
 - **Optional**: If the lysate is too viscous, add RNase A (10 μg/ml) and DNase I (5 μg/ml) and incubate on ice for 10-15 minutes.
 - 4) Centrifuge the lysate at 12,000 rpm for 15 minutes at 4 °C to pellet the cellular debris. Apply the supernatant onto the Ni²⁺ column.
- 2. For proteins secreted into culture medium by yeast, insect, or mammalian expression systems.
 - 1) If the culture supernatant does not contain EDTA, histidine, or any other reducing agents that might affect the Ni²⁺ column, it can be applied directly to the column. Otherwise, perform the following procedures.
 - 2) Dialyze the sample against 1 × PBS before applying it onto the column.
 - 3) For large volume of supernatant, concentrate the proteins by ammonium sulphate precipitation, dialyze the dissolved protein solution against 1 × PBS, and then apply the solution onto the Ni²⁺ column.

Column Preparation

- 1. Mix the slurry by gently inverting the bottle several times to completely suspend the resin.
- 2. Transfer an appropriate volume of the slurry to the column. Allow the resin to settle down and the storage buffer to drain from the column.
- 3. Equilibrate the column with $4 \times \text{bed volumes}$ of LE buffer or until A_{280} is stable.

Column Purification

- 1. Apply the clear sample containing target polyhistidine-tagged protein onto the column with a flow-rate of 0.5 1 ml per minute. Collect and save the flow-through for analysis.
- 2. Wash the column with 8 \times bed volumes of Wash buffer or until A₂₈₀ is stable at the flow-rate of 1 ml per minute.
- 3. Elute the polyhistidine-tagged protein with 5 to 10 × bed volumes of Elution Buffer at the flow-rate of 0.5 1 ml per minute. Collect the elute and dialyze it against 20 mM Tris-HCl, pH 8.0 or 1 × PBS, pH 7.4 according to the specific application of the target protein.

Regeneration of Column

For complete regeneration, wash the resin with the following solutions:

- 1 2 × bed volumes of 6 M GuHCl, 0.2 M acetic acid
- 2. 5 × bed volumes of deionized water

- 3. 3 × bed volumes of 2% SDS
- 4. 5 × bed volumes of deionized water
- 5. 5 × bed volumes of 100% EtOH
- 6. 5 × bed volumes of deionized water
- 7. 5 × bed volumes of 100 mM EDTA (pH 8)
- 8. 5 × bed volumes of deionized water
- 9. 5 × bed volumes of 100 mM NiSO₄
- 10. 10 × bed volumes of deionized water
- 11. For long-term storage, the resin should be stored in 20% ethanol at 2 8°C.

III Troubleshooting

Problem	Possible Cause	Solution
	The polyhistidine tag is not exposed because of protein folding.	Try denaturing conditions.
	The expression level is too low.	Optimize the expression conditions.
	Not enough sample is loaded.	Load more sample.
The yield of the purified polyhistidine-tagged protein is low or	The protein was eluted by too much stringent washing.	Use LE Buffer instead of Wash Buffer to wash the resin.
undetectable.	The recombinant protein has very high affinity for the resin.	Increase the stringency of the elution by decreasing the pH or increasing the imidazole concentration.
		Use EDTA or EGTA (10-100 mM) to strip the resin of nickel ions and elute the protein.
	The protein is degraded.	Perform all purification steps at 4°C and use protease inhibitors.
	The resin was not washed well.	Wash with more bed volumes of Wash Buffer.
Multiple bands observed in the eluted protein.		Try a pH gradient elution or an imidazole gradient elution.
in the cluted protein.	There are other His-rich proteins in sample.	Try an additional wash with a high-stringency buffer of lower pH (between pH 4 and pH 6) before the elution step.

		Try a pH gradient elution or an imidazole gradient
		elution.
		Perform a second purification over another type of resin
The column turns white.	Chelating agents present in the buffer strip the nickel ions from the column.	Recharge the column with Ni ²⁺ as described on page 2 (Regeneration of Column).

IV Ordering Information

Product Name	Cat. No.
Ni Resin FF	L00465
High Affinity Ni-Charged Resin FF Prepacked Column	L00683
Ni-IDA Resin FF Prepacked Column	L00684
Ni-charged MagBeads	L00295
Glutathione Resin	L00206
Glutathione MagBeads	L00327
Streptavidin Resin	L00353
GST Fusion Protein Purification Kit	L00207
Protein Expression and Purification Kit	L00208

GenScript US

860 Centennial Ave., Piscataway, NJ 08854 Tel: 732-885-9188, 732-885-9688

Fax: 732-210-0262, 732-885-5878
Email: product@genscript.com
Web: http://www.genscript.com

For Research Use Only.