

Human Recombinant Adenosine A3 Receptor Stable Cell Line Cat. No. M00464

Version 12182015

I	INTRODUCTION	1
II	BACKGROUND	1
Ш	REPRESENTATIVE DATA	2
IV	THAWING AND SUBCULTURING	2
V	REFERENCES	3
	Limited Use License Agreement	4

I. INTRODUCTION

Catalog Number: M00464

Cell Line Name: CHO-K1/ADORA3/G_{a15}

Gene Synonyms: ADORA3, A3AR, AD026, RP11-552M11.7, bA552M11.5

Expressed Gene: GenBank Accession Number NM_000677; no expressed tags

Host Cell: CHO-K1/ Ga15

Quantity: Two vials of frozen cells (3x10⁶ per vial)

Stability: 16 passages

Applications: Functional assays for ADORA3 receptor

Freeze Medium: 45% culture medium, 45% FBS, and 10% DMSO

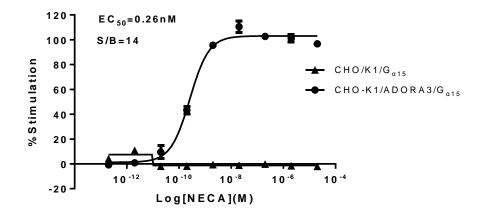
Complete Growth Medium: Ham's F12, 10% FBS

Culture Medium: Ham's F12, 10% FBS, 3 µg/mL puromycin, and 100 µg/mL Hygromycin B

Mycoplasma Status: Negative

Storage: Liquid nitrogen immediately upon delivery

II. BACKGROUND


Extracellular adenosine mediates a multitude of biological effects, including wakefulness, antiarrythmia, bronchoconstriction and response to ischemia and oxidative stress. A family of four G-protein coupled adrenoceptors, A1, A2A, A2B and A3, is responsible for these effects. A3, which couples to G_{i/o}, is expressed in a wide range of human tissues, but most predominantly in the lung and liver. Recent animal model studies have shown that A3 receptors play important roles in brain ischemia, immunosuppresion, and bronchospasm. A3 receptor agonists and/or agonists may have important clinical value in the treatment of asthma and inflammation. Mice lacking A3 receptors display reduced mast cell degranulation and bronchoconstriction in response to adenosine.

^{§:} GenScript employs a PCR-based method to test the mycoplasma. The test covers 11 of the most common strains of mycoplasma, (covering approximately 95% of M. fermentans, M. hyorhinis, M. arginini, M. orale, M. salivarium, M. hominis, M. pulmonis, M. arthritidis, M. neurolyticum, M. hyopneumoniae and M. capricolum) and one species Ureaplasma (U. urealyticum), with sufficient sensitivity and specificity.

III. REPRESENTATIVE DATA

Concentration-dependent stimulation of intracellular calcium mobilization by NECA in CHO-K1/ADORA3/ $G_{\alpha15}$ and CHO-K1/ $G_{\alpha15}$ cells

Figure: NECA-induced concentration-dependent stimulation of intracellular calcium mobilization in CHO-K1/ADORA3/ $G_{\alpha15}$ and CHO-K1/ $G_{\alpha15}$ cells. The cells were loaded with Calcium-4 prior to stimulation with a ADORA3 receptor agonist NECA. The intracellular calcium change was measured by FLIPR. The relative fluorescent units (RFU) were plotted against the log of the cumulative doses (10-fold dilution) of NECA (Mean \pm SD, n=2). The EC₅₀ of NECA on ADORA3 in CHO-K1 cells was 0.26 nM. The S/B of NECA on ADORA3 in CHO-K1/ $G_{\alpha15}$ cells was 14.

Notes:

1. EC₅₀ value is calculated with four parameter logistic equation:

Y=Bottom + (Top-Bottom)/(1+10^((LogEC₅₀-X)*HillSlope))

X is the logarithm of concentration. Y is the response

Y is RFU and starts at Bottom and goes to Top with a sigmoid shape.

2. Signal to background Ratio (S/B) = Top/Bottom

IV. THAWING AND SUBCULTURING

Thawing Protocol

- 1. Remove the vial from liquid nitrogen tank and thaw cells quickly in a 37°C water-bath.
- 2. Just before the cells are completely thawed, decontaminate the outside of the vial with 70% ethanol and transfer the cells to a 15 ml centrifuge tube containing 9 ml of complete growth medium.
- 3. Pellet cells by centrifugation at 200 x g force for 5 min, and remove the medium.
- 4. Resuspend the cells in complete growth medium.
- 5. Transfer the cell suspension to a 10 cm dish with 10 ml of complete growth medium.
- 6. Grow the cells in incubator with 37°C, 5 %CO₂.
- 7. Add antibiotic in the following day.

Subculturing Protocol

- 1. Remove the culture medium from cells.
- 2. Wash cells with PBS (pH=7.4) to remove all traces of serum that contains trypsin inhibitor.
- 3. Add 2.0 ml of 0.05% (w/v) Trypsin- EDTA (GIBCO, Cat No. 25300) solution into 10 cm dish and observe the cells under an inverted microscope until cell layer is dispersed (usually within 3 to 5 minutes).
 Note: To avoid cells clumping, do not agitate the cells by hitting or shaking the dish while waiting for the cells detach. If cells are difficult to detach, please place the dish in 37°C incubator for ~2 min.
- 4. Add 6.0 to 8.0 ml of complete growth medium into dish and aspirate cells by gently pipetting.
- 5. Centrifuge the cells at 200 x g force for 5min, and remove the medium.
- 6. Resuspend the cells in culture medium and add the cells suspension to new culture dish.
- 7. Grow the cells in incubator with 37°C, 5 %CO₂..

Subcultivation Ratio: 1:3 to 1:8 weekly. Medium Renewal: Every 2 to 3 days

V. REFERENCES

- 1. Baraldi et al. (2000). A (3) adenosine receptor ligands: history and perspectives. Med Res Rev 20:103-128.
- Schepp et al. (2008) Bench-to-bedside review: adenosine receptors promising targets in acute lung injury?
 Crit Care 12:226.
- 3. Fredholm BB *et al.* (2000) Structure and function of adenosine receptors and their genes. *Naunyn Schmiedebergs Arch Pharmacol.* 362(4-5):364-74.
- 4. Tilley SL, et al. (2000) Identification of A3 receptor- and mast cell-dependent and -independent components of adenosine-mediated airway responsiveness in mice. *J Immunol.* 171(1):331-7.
- 5. Zhong H, *et al.* (2000) Activation of murine lung mast cells by the adenosine A3 receptor. *J Immunol.* 171(1):338-45.

GenScript USA Inc.

120 Centennial Ave., Piscataway, NJ 08854 Tel: 732-885-9188, 732-885-9688

> Fax: 732-210-0262, 732-885-5878 Email: <u>info@genscript.com</u>

Web: http://www.genscript.com

For Research Use Only.

Web: www.genscript.com

Tel: 1-732-885-9188

Limited Use License Agreement

This is a legal agreement between you (Licensee) and GenScript USA Inc. governing use of GenScript's stable cell line products and protocols provided to licensee. By purchasing and using the stable cell line, the buyer agrees to comply with the following terms and conditions of this label license and recognizes and agrees to such restrictions:

- The products are not transferable and will be used at the site where they were purchased. Transfer to another site owned by buyer will be permitted only upon written request by buyer followed by subsequent written approval by GenScript.
- 2) The purchaser cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party.
- 3) The products sold by GenScript are for laboratory and animal research purposes only. The products are not to be used on humans, for consumption, or for any unlawful uses.

GenScript USA Inc. will not assert against the buyer a claim of infringement of patents owned or controlled by GenScript USA Inc. and claiming this product based upon the manufacture, use or sale of a clinical diagnostic, therapeutic and vaccine, or prophylactic product developed in research by the buyer in which this product or its components has been employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on the use of this product for other purposes, contact Marketing Department, GenScript USA Inc., 120 Centennial Avenue, Piscataway, New Jersey 08840, U.S.A. Phone: 1-732-885-9188. Fax: 1-732-210-0262. Email: marketing@genscript.com.