

User Guide HR2-073 (pg 1)

Features

Red Wings Screen HT^{TM} is a high throughput reagent kit designed to provide a rapid screening method for the crystallization of biological macromolecules. The kit is straightforward, effective, and practical for the determination of preliminary crystallization conditions. The kit is also effective in determining the solubility of a macromolecule in a wide range of reagents and pH.

Red Wings Screen HT is supplied in a sterile, polypropylene Deep Well block, each reservoir containing 1 ml of sterile filtered reagent. The block is heat sealed using a special polypropylene backed film.

Red Wings Screen offer a sparse matrix of trial crystallization reagent conditions based upon the original Red Wings Screen of Alexei Savchenko's group.³ The primary screen variables are salt, pH, and precipitant (salts, polymers, volatile organics, and non-volatile organics).

General Description

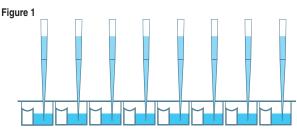
Red Wings Screen HT is supplied in a sterile, polypropylene 96 Deep Well block, each reservoir containing 1 ml of sterile filtered reagent. The block is heat sealed using a special polypropylene backed film.

Each Red Wings Screen HT kit is supplied with an adhesive sealing film which can be used to seal the block after removing the heat seal. Additional adhesive sealing films can be obtained from Hampton Research or laboratory supply companies which offer high throughput plates and seals.

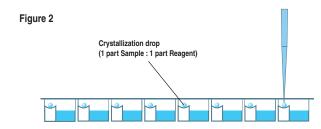
Sample Preparation

The macromolecular sample should be homogenous, as pure as is practically possible (>95%) and free of amorphous and particulate material. Remove amorphous material by centrifugation or microfiltration prior to use. 1,2,4

The recommended sample concentration is 5 to 25 mg/ml in sterile filtered, deionized water or dilute (25 mM or less) buffer. For initial screens, the sample should be free of unnecessary additives in order to observe the effect of the Red Wings Screen HT variables. However, agents that promote and preserve sample stability and homogeneity can and should be included in the sample. For additional sample preparation recommendation see Crystal Growth 101 - Preliminary Sample Preparation bulletin from Hampton Research.


Preparing the Deep Well Block for Use

Allow the block to equilibrate to room temperature. To remove stray reagent from the sealing film, centrifuge the block at 500 rpm for 5 minutes. To remove film, grasp a corner of the film and gently peel film from the block. Alternatively, the film can be pierced to access reagents.


Performing the Screen

Manual Method - Sitting Drop Vapor Diffusion

1. Using a 96 well sitting drop vapor diffusion plate, pipet the recommended volume (typically 100 microliters) of crystallization reagent from the Deep Well block into the reservoirs of the crystallization plate. The Deep Well block is compatible with 8 and 12 channel pipets as well as many automated liquid handling systems. Use clean pipet tips for each reagent set transfer and change pipet tips when changing reagents. For an 8 channel pipet, transfer reagents A1-H1 to reservoirs A1-H1 of the crystallization plate. Repeat this procedure for reagent columns 2 through 12. Change pipet tips when moving between reagent columns. For a 12 channel pipet, transfer reagents A1-A12 to reservoirs A1-A12 of the crystallization plate. Repeat this procedure for reagent rows B through H. See Figure 1. Time and pipet tips can be conserved by batch pipetting multiple plates with the same (row or column) of reagent before changing reagent and pipet tips.

2. Using clean pipet tips, pipet 0.05 to 2 microliters of crystallization reagent from the crystallization plate reservoir to the sitting drop well. Some 96 well crystallization plates allow this procedure to be performed using a multichannel pipet where other plates require the use of a single channel pipet. Change the pipet tip between reagents. See Figure 2.

- 3. Using a clean pipet tip, pipet 0.05 to 2 microliters of sample to the reagent drop in the sitting drop well. One may choose to simply dispense the sample with no mixing or dispense with mixing by gently aspirating and dispensing the sample several times, keeping the tip in the drop during mixing to avoid foaming. Work carefully but quickly to minimize evaporation from the crystallization plate. See Figure 2.
- 4. Seal the crystallization plate as per the manufacturer's recommendation. Most 96 well crystallization plates are sealed using a clear sealing tape, film, or cap mat. View and score the experiment as desired. See Hampton

Red Wings Screen H[™]

User Guide HR2-073 (pg 2)

Figure 3Typical observations in a crystallization experiment

Clear Drop

Skin / Precipitate

Precipitate

Precipitate / Phase

Quasi Crystals

Microcrystals

Needle Cluster

Plates

Rod Cluster

Single Crystal Research technical bulletin Crystal Growth 101 - Viewing Crystallization Experiments for additional information on viewing drops.

5. Seal the remaining reagent in the Deep Well block using sealing film.

Red Wings Screen HT Deep Well Block and Automated Liquid Handling Systems

The polypropylene Deep Well block is designed to be compatible with the SBS standard 96 microwell format and is therefore compatible with numerous automated liquid handling systems that accept 8 x 12 96 well assay blocks. Follow the manufacturer's recommendation for handling deep well microplates.

Examine the Drop

Carefully examine the drops under a stereo microscope (10 to 100x magnification) immediately after setting up the screen. Record all observations and be particularly careful to scan the focal plane for small crystals. Observe the drops once each day for the first week, then once a week there after. Records should indicate whether the drop is clear, contains precipitate, and or crystals. It is helpful to describe the drop contents using descriptive terms. Adding magnitude is also helpful. Example: 4+ yellow/brown fine precipitate, 2+ small bipyramid crystals, clear drop, 3+ needle shaped crystals in 1+ white precipitate. One may also employ a standard numerical scoring scheme (Clear = 0, Precipitate = 1, Crystal = 10, etc). Figure 3, on the left side of page 2 shows typical examples of what one might observe in a crystallization experiment.

Interpreting Red Wings Screen HT

Clear drops indicate that either the relative supersaturation of the sample and reagent is too low or the drop has not yet completed equilibration. If the drop remains clear after 3 to 4 weeks consider repeating the screen condition and doubling the sample concentration. If more than 70 of the 96 screen drops are clear consider doubling the sample concentration and repeating the entire screen.

Drops containing precipitate indicate either the relative supersaturation of the sample and reagent is too high, the sample has denatured, or the sample is heterogeneous. To reduce the relative supersaturation, dilute the sample twofold and repeat the screen condition. If more than 70 of the 96 screen drops contain precipitate and no crystals are present, consider diluting the sample concentration in half and repeating the entire screen. If sample denaturation is suspect, take measures to stabilize the sample (add reducing agent, ligands, glycerol, salt, or other stabilizing agents). If the sample is impure, aggregated, or heterogeneous take measures to pursue homogeneity. It is possible to obtain crystals from precipitate so do not discard nor ignore a drop containing precipitate. If possible, examine drops containing precipitate under polarizing optics to differentiate precipitate from microcrystalline material.

If the drop contains a macromolecular crystal the relative supersaturation of the sample and reagent is appropriate for crystal nucleation and growth. The next step is to optimize the preliminary conditions (pH, salt type, salt concentration, precipitant type, precipitant concentration, sample concentration, temperature, additives, and other crystallization variables) which produced the crystal in order to improve crystal size and quality.

Compare the observations between the 4°C and room temperature incubation to determine the effect of temperature on sample solubility. Different results in the same drops at different temperatures indicate that sample solubility is temperature dependent and that one should include temperature as a variable in subsequent screens and optimization experiments.

Retain and observe plates until the drops are dried out. Crystal growth can occur within 15 minutes or one year.

HT Formulation

Crystallization reagents are formulated using the highest purity chemicals, ultrapure water (18.2 Megohm-cm, 5 ppb TOC) and are sterile filtered using 0.22 micron filters into sterile Deep Well blocks (no preservatives added).

Crystallization reagents are readily reproduced using Hampton Research Optimize[™] and StockOptions[™] stock solutions of salts, polymers and buffers. Optimize and StockOptions stock reagents make reproducing crystallization screen reagents accurate, precise, fast, convenient and easy. Dilutions can be performed directly into the crystallization plate using Optimize and StockOptions stock reagents.

Crystallization reagents containing buffers are formulated by creating a 1.0 M stock buffer, titrated to the desired pH using Hydrochloric acid or Sodium hydroxide. The buffer is then

Red Wings Screen H

User Guide HR2-073 (pg 3)

diluted with the other reagent components and water. No further pH adjustment is required.

Crystallization reagents are stable at room temperature and are best if used within 12 months of receipt. To enhance reagent stability the crystallization reagents can be stored at 4°C or -20°C. Avoid ultraviolet light to preserve reagent stability.

If the sample contains phosphate, borate, or carbonate buffers it is possible to obtain inorganic crystals (false positives) when using crystallization reagents containing divalent cations such as magnesium, calcium, or zinc. To avoid false positives use phosphate, borate, or carbonate buffers at concentrations of 10 mM or less or exchange the phosphate, borate, or carbonate buffer with a more soluble buffer that does not complex with divalent cations.

References and Readings

- 1. Crystallization of nucleic acids and proteins, Edited by A. Ducruix and R. Giege, The Practical Approach Series, Oxford Univ. Press, 1992.
- 2. Current approaches to macromolecular crystallization. McPherson, A. Eur. J. Biochem. 189, 1-23, 1990.
- 3. Salvage or recovery of failed targets by in situ proteolysis. Yufeng Tong, Aiping Dong, Xiaohui Xu, Amy Wernimont. Methods Mol Biol. 2014;1140:179-88. doi: 10.1007/978-1-4939-0354-2_14.
- 4. Protein and Nucleic Acid Crystallization. Methods, A Companion to Methods in Enzymology, Academic Press, Volume 1, Number 1, August 1990.

Technical Support

Inquiries regarding Red Wings Screen HT reagent formulation, interpretation of screen results, optimization strategies and general inquiries regarding crystallization are welcome. Please e-mail, fax, or telephone your request to Hampton Research. Fax and e-mail Technical Support are available 24 hours a day. Telephone technical support is available 8:00 a.m. to 4:00 p.m. USA Pacific Standard Time.

Hampton Research 34 Journey Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 Technical Support e-mail: tech@hrmail.com Website: www.hamptonresearch.com

© 1991-2023 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Well	Salt	Well	Buffer ◊	Well	Precipitant
#		#		#	
1. (A1)	None	1. (A1)	0.1 M Sodium acetate trihydrate pH 4.6	1. (A1)	1.5 M Ammonium sulfate
2. (A2)	0.1 M Ammonium sulfate	2. (A2)	0.1 M BIS-TRIS pH 5.5	2. (A2)	25% w/v Polyethylene glycol 3,350
3. (A3)	0.2 M Ammonium acetate	3. (A3)	0.1 M HEPES pH 7.5	3. (A3)	25% w/v Polyethylene glycol 3,350
4. (A4)	None	4. (A4)	None	4. (A4)	0.2 M Magnesium formate dihydrate
5. (A5)	0.2 M Lithium sulfate monohydrate	5. (A5)	0.1 M HEPES pH 7.5	5. (A5)	25% w/v Polyethylene glycol 3,350
6. (A6)	None	6. (A6)	0.1 M Sodium acetate trihydrate pH 4.6	6. (A6)	2.0 M Sodium formate
7. (A7)	0.2 M Potassium acetate	7. (A7)	None	7. (A7)	20% w/v Polyethylene glycol 3,350
8. (A8)	0.2 M Magnesium nitrate hexahydrate	8. (A8)	None	8. (A8)	20% w/v Polyethylene glycol 3,350
9. (A9)	0.2 M Ammonium acetate	9. (A9)	0.1 M Sodium citrate tribasic dihydrate pH 5.6	9. (A9)	15% w/v Polyethylene glycol 4,000
1 ' '	0.2 M Sodium acetate trihydrate	. ,	0.1 M TRIS hydrochloride pH 8.5	10. (A10)	
11. (A11)		. ,	0.1 M TRIS hydrochloride pH 8.5	, ,	8% w/v Polyethylene glycol 8,000
12. (A12)		. ,	0.1 M HEPES pH 7.0	12. (A12)	· ·
13. (B1)	None	, ,	0.1 M BIS-TRIS propane pH 7.0	13. (B1)	
14. (B2)	0.1 M Ammonium sulfate	14. (B2)	·	14. (B2)	25% w/v Polyethylene glycol 3,350
15. (B3)	0.2 M Ammonium acetate	15. (B3)	·	15. (B3)	25% w/v Polyethylene glycol 3,350
16. (B4)	None	16. (B4)	0.1 M BIS-TRIS pH 6.5	16. (B4)	0.5 M Magnesium formate dihydrate
17. (B5)	0.2 M Magnesium acetate tetrahydrate	17. (B5)	None	17. (B5)	20% w/v Polyethylene glycol 3,350
18. (B6)	None	18. (B6)	0.1 M BIS-TRIS propane pH 7.0	18. (B6)	2.0 M Sodium formate
19. (B7)	0.2 M Potassium chloride	19. (B7)	None	19. (B7)	20% w/v Polyethylene glycol 3,350
20. (B8)	0.2 M Sodium acetate trihydrate	20. (B8)	None	20. (B8)	20% w/v Polyethylene glycol 3,350
21. (B9)	0.2 M Ammonium sulfate	. ,	0.1 M Sodium acetate trihydrate pH 4.6	21. (B9)	25% w/v Polyethylene glycol 4,000
22. (B10)		, ,	0.1 M Sodium acetate trihydrate pH 4.6	, ,	8% w/v Polyethylene glycol 4,000
23. (B11)		, ,	0.1 M HEPES pH 7.5	, ,	20% w/v Polyethylene glycol 10,000
24. (B12)	None	, ,	0.1 M HEPES pH 7.0	24. (B12)	·
25. (C1)	None	25. (C1)	0.1 M Tris pH 8.5	25. (C1)	1.5 M Ammonium sulfate
26. (C2)	0.1 M Ammonium sulfate	26. (C2)	0.1 M HEPES pH 7.5	26. (C2)	25% w/v Polyethylene glycol 3,350
27. (C3)	0.2 M Ammonium chloride	27. (C3)	None	27. (C3)	20% w/v Polyethylene glycol 3,350
28. (C4)	None	28. (C4)	0.1 M HEPES pH 7.5	28. (C4)	0.5 M Magnesium formate dihydrate
29. (C5)	0.2 M Sodium phosphate monobasic monohydrate	29. (C5)	None	29. (C5)	20% w/v Polyethylene glycol 3,350
30. (C6)	None	30. (C6)	0.1 M Tris pH 8.5	30. (C6)	2.0 M Sodium formate
31. (C7)	0.2 M Potassium phosphate monobasic	31. (C7)	None	31. (C7)	20% w/v Polyethylene glycol 3,350
32. (C8)	0.2 M Lithium citrate tribasic tetrahydrate	32. (C8)	None	32. (C8)	20% w/v Polyethylene glycol 3,350
33. (C9)	0.2 M Lithium sulfate monohydrate	33. (C9)		33. (C9)	30% w/v Polyethylene glycol 4,000
1 ' '	0.2 M Sodium acetate trihydrate	, ,	0.1 M Sodium cacodylate trihydrate pH 6.5	` '	30% w/v Polyethylene glycol 8,000
35. (C11)	· · · · · · · · · · · · · · · · · · ·	35. (C11)		. ,	30% w/v Polyethylene glycol 1,500
	0.02 M Calcium chloride dihydrate	, ,	0.1 M Sodium acetate trihydrate pH 4.6	. ,	30% v/v (+/-)-2-Methyl-2,4-pentanediol
37. (D1)	·	, ,	0.1 M Sodium acetate trihydrate pH 4.6	, ,	2.5 M Ammonium sulfate
38. (D2)		, ,	0.1 M Tris pH 8.5	, ,	25% w/v Polyethylene glycol 3,350
39. (D3)		39. (D3)	None	39. (D3)	
40. (D4)		40. (D4)	None	40. (D4)	
41. (D5)	•	41. (D5)		, ,	20% w/v Polyethylene glycol 3,350
42. (D6)	None	, ,	0.1 M Sodium acetate trihydrate pH 4.6	, ,	3.5 M Sodium formate
43. (D7)		43. (D7)	None	43. (D7)	
44. (D8)		44. (D8)		` '	20% w/v Polyethylene glycol 3,350
45. (D9)			0.1 M TRIS hydrochloride pH 8.5	, ,	30% w/v Polyethylene glycol 4,000
1 ' '	0.2 M Sodium chloride	, ,	0.1 M BIS-TRIS pH 6.5	, ,	25% w/v Polyethylene glycol 3,350
47. (D11)		, ,	0.1 M MES monohydrate pH 6.5	. ,	12% w/v Polyethylene glycol 20,000
	0.2 M Calcium chloride dihydrate	, ,	0.1 M HEPES sodium pH 7.5	. ,	28% v/v Polyethylene glycol 400
' '	•	. ,	·	` '	

 \Diamond Buffer pH is that of a 1.0 M stock prior to dilution with other reagent components: pH with HCl or NaOH.

Red Wings Screen HT[™] (Deep Well Block) contains 96 unique reagents beginning at position A1.

To determine the formulation of each reagent, simply read across the page.

Well #	Salt	Well #	Buffer ◊	Well #	Precipitant
49.(E1)	None		0.1 M BIS-TRIS propane pH 7.0		2.5 M Ammonium sulfate
50. (E2)	None	` '	0.1 M HEPES pH 7.5	٠,	2.0 M Ammonium formate
51. (E3)	0.2 M Ammonium formate	51. (E3)	None	51. (E3)	20% w/v Polyethylene glycol 3,350
52. (E4)	0.2 M Calcium chloride dihydrate	52. (E4)	None	52. (E4)	
53. (E5)	None		0.1 M Sodium acetate trihydrate pH 4.6	53. (E5)	3.2 M Sodium chloride
54. (E6)	None	. ,	0.1 M BIS-TRIS propane pH 7.0	54. (E6)	3.5 M Sodium formate
55. (E7)	0.2 M Potassium sodium tartrate tetrahydrate	55. (E7)	None	55. (E7)	20% w/v Polyethylene glycol 3,350
56. (E8)	0.15 M Potassium bromide	56. (E8)	None	56. (E8)	30% w/v Polyethylene glycol monomethyl ether 2,000
57. (E9)	0.2 M Ammonium sulfate	57. (E9)	0.1 M Sodium cacodylate trihydrate pH 6.5	57. (E9)	30% w/v Polyethylene glycol 8,000
58. (E10)	0.2 M Sodium chloride	. ,	0.1 M HEPES pH 7.5	58. (E10)	25% w/v Polyethylene glycol 3,350
59. (E11)	0.05 M Magnesium chloride hexahydrate	59. (E11)	0.1 M HEPES pH 7.5		30% v/v Polyethylene glycol monomethyl ether 550
60. (E12)	2.0 M Ammonium sulfate	60. (E12)	None	60. (E12)	5% v/v 2-Propanol
61.(F1)			0.1 M Tris pH 8.5	, ,	2.5 M Ammonium sulfate
62. (F2)	None	62. (F2)	0.1 M TRIS hydrochloride pH 8.5	62. (F2)	2.0 M Ammonium phosphate monobasic
63. (F3)	0.2 M Ammonium iodide	63. (F3)	None	63. (F3)	
64. (F4)	0.2 M Potassium sulfate	64. (F4)	None	64. (F4)	20% w/v Polyethylene glycol 3,350
65. (F5)	None		0.1 M BIS-TRIS propane pH 7.0	65. (F5)	3.2 M Sodium chloride
66. (F6)	None	66. (F6)	0.1 M Tris pH 8.5	66. (F6)	3.5 M Sodium formate
67. (F7)	0.2 M Magnesium chloride hexahydrate	. ,	0.1 M HEPES pH 7.5	. ,	
68. (F8)	0.1 M Potassium thiocyanate	68. (F8)	None	68. (F8)	
69. (F9)	0.2 M Calcium acetate hydrate	69. (F9)	0.1 M Sodium cacodylate trihydrate pH 6.5	69. (F9)	18% w/v Polyethylene glycol 8,000
70. (F10)	None	70. (F10)	0.1 M Citric acid pH 3.5	70. (F10)	25% w/v Polyethylene glycol 3,350
71.(F11)	0.2 M Ammonium sulfate	71. (F11)	0.1 M MES monohydrate pH 6.5	71.(F11)	30% w/v Polyethylene glycol monomethyl ether 5,000
72. (F12)	0.2 M Sodium citrate tribasic dihydrate	72. (F12)	0.1 M Sodium cacodylate trihydrate pH 6.5	72. (F12)	15% v/v 2-Propanol
	0.2 M Potassium sodium tartrate tetrahydrate	73. (G1)	0.1 M Sodium citrate tribasic dihydrate pH 5.6	73.(G1)	2.0 M Ammonium sulfate
74. (G2)		74. (G2)	0.1 M BIS-TRIS pH 5.5	74. (G2)	25% w/v Polyethylene glycol 3,350
75. (G3)	0.2 M Ammonium nitrate	75. (G3)	None		20% w/v Polyethylene glycol 3,350
76. (G4)	0.2 M Potassium thiocyanate	76. (G4)	None	76. (G4)	20% w/v Polyethylene glycol 3,350
77. (G5)	None	77. (G5)	0.1 M Tris pH 8.5	77. (G5)	3.2 M Sodium chloride
78. (G6)	None	78. (G6)	None	78. (G6)	1.0 M Sodium phosphate monobasic monohydrate, Potassium phosphate dibasic / pH 6.9
79. (G7)	0.2 M Magnesium chloride hexahydrate	79. (G7)	0.1 M Tris pH 8.5	79. (G7)	25% w/v Polyethylene glycol 3,350
80. (G8)		, ,	0.1 M Tris pH 8.5		20% w/v Polyethylene glycol monomethyl ether 2,000
81. (G9)			0.1 M Sodium cacodylate trihydrate pH 6.5	81. (G9)	20% w/v Polyethylene glycol 8,000
82. (G10)		82. (G10)	0.1 M Sodium acetate trihydrate pH 4.5	82. (G10)	25% w/v Polyethylene glycol 3,350
83. (G11)			0.1 M BIS-TRIS pH 6.5	83.(G11)	20% w/v Polyethylene glycol monomethyl ether 5,000
84. (G12)	None	84. (G12)	0.1 M HEPES sodium pH 7.5	84. (G12)	20% w/v Polyethylene glycol 4,000 10% v/v 2-Propanol
85. (H1)	2.0 M Ammonium sulfate	85. (H1)	0.1 M HEPES sodium pH 7.5	85. (H1)	2% v/v Polyethylene glycol 400
86. (H2)	0.2 M Ammonium acetate	٠,	0.1 M BIS-TRIS pH 6.5	86. (H2)	
87. (H3)	0.2 M Ammonium tartrate dibasic	87. (H3)	None	٠,	20% w/v Polyethylene glycol 3,350
88. (H4)	0.2 M Lithium sulfate monohydrate		0.1 M BIS-TRIS pH 6.5	٠,	25% w/v Polyethylene glycol 3,350
89. (H5)	None	. ,	0.1 M HEPES sodium pH 7.5	٠,	1.4 M Sodium citrate tribasic dihydrate
90. (H6)	0.2 M Sodium tartrate dibasic dihydrate	90. (H6)	-	90. (H6)	-
91. (H7)	0.2 M Magnesium formate dihydrate	91. (H7)		91. (H7)	
92. (H8)	0.2 M Ammonium acetate	92. (H8)	0.1 M Sodium citrate tribasic dihydrate pH 5.6	92. (H8)	30% w/v Polyethylene glycol 4,000
93. (H9)	0.1 M Succinic Acid pH 7.0	93. (H9)	None	93. (H9)	15% w/v Polyethylene glycol 3,350
94. (H10)	•	٠,	0.1 M BIS-TRIS pH 6.5	٠,	28% w/v Polyethylene glycol monomethyl ether 2,000
95. (H11)		, ,	0.1 M Sodium citrate tribasic dihydrate pH 5.6	, ,	2.5 M 1,6-Hexanediol
96. (H12)		. ,	0.1 M Sodium citrate tribasic dihydrate pH 5.6		20% w/v Polyethylene glycol 4,000
		, ,			20% v/v 2-Propanol

 \Diamond Buffer pH is that of a 1.0 M stock prior to dilution with other reagent components: pH with HCl or NaOH.

Red Wings Screen HT[™] (Deep Well Block) contains 96 unique reagents beginning at position A1.

To determine the formulation of each reagent, simply read across the page.

Page 2 of 2

34 Journey

Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611

E-mail: tech@hrmail.com

Website: www.hamptonresearch.com

Solutions for Crystal Growth

© 1991-2023 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Red W	/ings Screen HT [™] - H
1. (A1)	1.5 M Ammonium sulfate, 0.1 M
2. (A2)	25% w/v Polyethylene glycol 3,3
3. (A3)	25% w/v Polyethylene glycol 3,3
4. (A4)	0.2 M Magnesium formate dihyo

 Sample Concentration:
 Date:
Temperature:

1 Clear Drop

2 Phase Separation 6 Needles (1D Growth) 3 Regular Granular Precipitate

7 Plates (2D Growth)

5 Posettes or Spherulites

Microcrystals	9	Single Crystals (3D	Growth > 0.2 mm)
Birefringent Precipitate or	8	Single Crystals (3D	Growth $< 0.2 \mathrm{mm}$)

Red W	ings Screen HT [™] - HR2-073 Scoring Sheet	Date:	Date:	Date:
1. (A1)	1.5 M Ammonium sulfate, 0.1 M Sodium acetate trihydrate pH 4.6			
2. (A2)	25% w/v Polyethylene glycol 3,350, 0.1 M Ammonium sulfate, 0.1 M BIS-TRIS pH 5.5			
3. (A3)	25% w/v Polyethylene glycol 3,350, 0.2 M Ammonium acetate, 0.1 M HEPES pH 7.5		T	
4. (A4)	0.2 M Magnesium formate dihydrate			
5. (A5)	25% w/v Polyethylene glycol 3,350, 0.2 M Lithium sulfate monohydrate, 0.1 M HEPES pH 7.5		T	
6. (A6)	2.0 M Sodium formate, 0.1 M Sodium acetate trihydrate pH 4.6		T	
7. (A7)	20% w/v Polyethylene glycol 3,350, 0.2 M Potassium acetate			
8. (A8)	20% w/v Polyethylene glycol 3,350, 0.2 M Magnesium nitrate hexahydrate		T	
9. (A9)	15% w/v Polyethylene glycol 4,000, 0.2 M Ammonium acetate, 0.1 M Sodium citrate tribasic dihydrate pH 5.6		T	
10. (A10)	30% w/v Polyethylene glycol 4,000, 0.2 M Sodium acetate trihydrate, 0.1 M TRIS hydrochloride pH 8.5			
11. (A11)	8% w/v Polyethylene glycol 8,000, 0.1 M TRIS hydrochloride pH 8.5		1	
12. (A12)	30% v/v Jeffamine ED-2001 pH 7.0, 0.1 M HEPES pH 7.0	1		
13. (B1)	1.5 M Ammonium sulfate, 0.1 M BIS-TRIS propane pH 7.0	1		
14. (B2)	25% w/v Polyethylene glycol 3,350, 0.1 M Ammonium sulfate, 0.1 M BIS-TRIS pH 6.5	1	1	1
15. (B3)	25% w/v Polyethylene glycol 3,350, 0.2 M Ammonium acetate, 0.1 M Tris pH 8.5	1	T	
16. (B4)	0.5 M Magnesium formate dihydrate, 0.1 M BIS-TRIS pH 6.5		†	
17. (B5)	20% w/v Polyethylene glycol 3,350, 0.2 M Magnesium acetate tetrahydrate		 	1
18. (B6)	2.0 M Sodium formate, 0.1 M BIS-TRIS propane pH 7.0		1	1
19. (B7)	20% w/v Polyethylene glycol 3,350, 0.2 M Potassium chloride	<u> </u>	†	1
20. (B8)	20% w/v Polyethylene glycol 3,350, 0.2 M Sodium acetate trihydrate	1	†	1
21. (B9)	25% w/v Polyethylene glycol 4,000, 0.2 M Ammonium sulfate, 0.1 M Sodium acetate trihydrate pH 4.6	<u> </u>	1	1
. ,	8% w/v Polyethylene glycol 4,000, 0.1 M Sodium acetate trihydrate pH 4.6	†	+	+
	20% w/v Polyethylene glycol 10,000, 0.1 M HEPES pH 7.5	†	†	
	30% v/v Jeffamine M-600 pH 7.0, 0.1 M HEPES pH 7.0	<u> </u>	†	1
25. (C1)	1.5 M Ammonium sulfate, 0.1 M Tris pH 8.5	†	†	1
26. (C2)	25% w/v Polyethylene glycol 3,350, 0.1 M Ammonium sulfate, 0.1 M HEPES pH 7.5	<u> </u>	1	1
27. (C3)	20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium chloride	<u> </u>	 	1
28. (C4)	0.5 M Magnesium formate dihydrate, 0.1 M HEPES pH 7.5	†	†	1
29. (C5)	20% w/v Polyethylene glycol 3,350, 0.2 M Sodium phosphate monobasic monohydrate	†	+	+
30. (C6)	2.0 M Sodium formate, 0.1 M Tris pH 8.5	<u> </u>	†	1
31. (C7)	20% w/v Polyethylene glycol 3,350, 0.2 M Potassium phosphate monobasic	 	+	+
32. (C8)	20% w/v Polyethylene glycol 3,350, 0.2 M Lithium citrate tribasic tetrahydrate		+	+
33. (C9)	30% w/v Polyethylene glycol 4,000, 0.2 M Lithium sulfate monohydrate, 0.1 M TRIS hydrochloride pH 8.5	 	†	\top
34. (C10)	30% w/v Polyethylene glycol 8,000, 0.2 M Sodium acetate trihydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5	<u> </u>	+	\top
, ,	30% w/v Polyethylene glycol 1,500	<u> </u>	†	\top
, ,	30% v/v (+/-)-2-Methyl-2,4-pentanediol, 0.02 M Calcium chloride dihydrate, 0.1 M Sodium acetate trihydrate pH 4.6	†	†	+
37. (D1)	2.5 M Ammonium sulfate, 0.1 M Sodium acetate trihydrate pH 4.6	†	†	+
38. (D2)	25% w/v Polyethylene glycol 3,350, 0.1 M Ammonium sulfate, 0.1 M Tris pH 8.5	 	†	\dagger
39. (D3)	20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium phosphate dibasic	 	+	+
40. (D4)	20% w/v Polyethylene glycol 3,350, 0.2 M Calcium acetate hydrate	 	+	+
41. (D5)	20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium citrate dibasic	+	+	+
42. (D6)	3.5 M Sodium formate, 0.1 M Sodium acetate trihydrate pH 4.6	+	+	+
43. (D7)	20% w/v Polyethylene glycol 3,350, 0.2 M Potassium fluoride	 	+	+
44. (D8)	20% w/v Polyethylene glycol 3,350, 0.2 M Sodium iodide	+	+	+-
45. (D9)	30% w/v Polyethylene glycol 4,000, 0.2 M Magnesium chloride hexahydrate, 0.1 M TRIS hydrochloride pH 8.5	+	+	+
. ,	25% w/v Polyethylene glycol 3,350, 0.2 M Sodium chloride, 0.1 M BIS-TRIS pH 6.5	+	+	+
	12% w/v Polyethylene glycol 20,000, 0.1 M MES monohydrate pH 6.5	+	+	+-
	28% v/v Polyethylene glycol 400, 0.2 M Calcium chloride dihydrate, 0.1 M HEPES sodium pH 7.5	+	+	+-

Sample:

Sample Buffer:

Reservoir Volume:

Solutions for Crystal Growth	RESEARC	HAMPTO
two to	H	\mathbf{Z}
S.,		

34 Journey
Aliso Viejo, CA 92656-3317 U.S.A.
Tel: (949) 425-1321
e-mail: tech@hrmail.com
Website: www.hamptonresearch.com

© 1991-2023 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Sample:	Sample Concentration:	1 Clear Drop	5 Posettes or Spherulites		
Sample Buffer:	Date:	2 Phase Separation	6 Needles (1D Growth)7 Plates (2D Growth)		
Reservoir Volume:	- 	3 Regular Granular Precipitate			
	Temperature:	4 Birefringent Precipitate or	8 Single Crystals (3D Growth < 0.2 mm)		
Drop Volume: Total µl Sample µl Reserv	oirμl Additiveμl	Microcrystals	9 Single Crystals (3D Growth > 0.2 mm)		

ume: Iotalµl Sampleµl Reservoirµl Additiveµl Microcrystals	Date:	Date:	Date:
Red Wings Screen HT [™] - HR2-073 Scoring Sheet	Date.	Date.	Date.
49. (E1) 2.5 M Ammonium sulfate, 0.1 M BIS-TRIS propane pH 7.0			
50. (E2) 2.0 M Ammonium formate, 0.1 M HEPES pH 7.5			
51. (E3) 20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium formate			
52. (E4) 20% w/v Polyethylene glycol 3,350, 0.2 M Calcium chloride dihydrate			
53. (E5) 3.2 M Sodium chloride, 0.1 M Sodium acetate trihydrate pH 4.6			
54. (E6) 3.5 M Sodium formate, 0.1 M BIS-TRIS propane pH 7.0			_
55. (E7) 20% w/v Polyethylene glycol 3,350, 0.2 M Potassium sodium tartrate tetrahydrate			
56. (E8) 30% w/v Polyethylene glycol monomethyl ether 2,000, 0.15 M Potassium bromide			
57. (E9) 30% w/v Polyethylene glycol 8,000, 0.2 M Ammonium sulfate, 0.1 M Sodium cacodylate trihydrate pH 6.5			
58. (E10) 25% w/v Polyethylene glycol 3,350, 0.2 M Sodium chloride, 0.1 M HEPES pH 7.5			
59. (E11) 30% v/v Polyethylene glycol monomethyl ether 550, 0.05 M Magnesium chloride hexahydrate, 0.1 M HEPES pH 7.5			
60. (E12) 2.0 M Ammonium sulfate, 5% v/v 2-Propanol			
S1. (F1) 2.5 M Ammonium sulfate, 0.1 M Tris pH 8.5			
S2. (F2) 2.0 M Ammonium phosphate monobasic, 0.1 M TRIS hydrochloride pH 8.5			
33. (F3) 20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium iodide		1	
84. (F4) 20% w/v Polyethylene glycol 3,350, 0.2 M Potassium sulfate			
55. (F5) 3.2 M Sodium chloride, 0.1 M BIS-TRIS propane pH 7.0			
66. (F6) 3.5 M Sodium formate, 0.1 M Tris pH 8.5			
37. (F7) 25% w/v Polyethylene glycol 3,350, 0.2 M Magnesium chloride hexahydrate, 0.1 M HEPES pH 7.5			
8. (F8) 30% w/v Polyethylene glycol monomethyl ether 2,000, 0.1 M Potassium thiocyanate			
9. (F9) 18% w/v Polyethylene glycol 8,000, 0.2 M Calcium acetate hydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5			
70. (F10) 25% w/v Polyethylene glycol 3,350, 0.1 M Citric acid pH 3.5			
71. (F11) 30% w/v Polyethylene glycol monomethyl ether 5,000, 0.2 M Ammonium sulfate, 0.1 M MES monohydrate pH 6.5			
72. (F12) 15% v/v 2-Propanol, 0.2 M Sodium citrate tribasic dihydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5			
3. (G1) 2.0 M Ammonium sulfate, 0.2 M Potassium sodium tartrate tetrahydrate, 0.1 M Sodium citrate tribasic dihydrate pH 5.6			
74. (G2) 25% w/v Polyethylene glycol 3,350, 0.2 M Ammonium acetate, 0.1 M BIS-TRIS pH 5.5			
75. (G3) 20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium nitrate			
76. (G4) 20% w/v Polyethylene glycol 3,350, 0.2 M Potassium thiocyanate			
7. (G5) 3.2 M Sodium chloride, 0.1 M Tris pH 8.5			
78. (G6) 1.0 M Sodium phosphate monobasic monohydrate, Potassium phosphate dibasic / pH 6.9			
9. (G7) 25% w/v Polyethylene glycol 3,350, 0.2 M Magnesium chloride hexahydrate, 0.1 M Tris pH 8.5			
0. (G8) 20% w/v Polyethylene glycol monomethyl ether 2,000, 0.2 M Trimethylamine N-oxide dihydrate, 0.1 M Tris pH 8.5			
11. (G9) 20% w/v Polyethylene glycol 8,000, 0.2 M Magnesium acetate tetrahydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5			
2. (G10) 25% w/v Polyethylene glycol 3,350, 0.1 M Sodium acetate trihydrate pH 4.5			
3. (G11) 20% w/v Polyethylene glycol monomethyl ether 5,000, 0.1 M BIS-TRIS pH 6.5			
4. (G12) 10% v/v 2-Propanol, 20% w/v Polyethylene glycol 4,000, 0.1 M HEPES sodium pH 7.5			
5. (H1) 2.0 M Ammonium sulfate, 2% v/v Polyethylene glycol 400, 0.1 M HEPES sodium pH 7.5			
6. (H2) 25% w/v Polyethylene glycol 3,350, 0.2 M Ammonium acetate, 0.1 M BIS-TRIS pH 6.5			
77. (H3) 20% w/v Polyethylene glycol 3,350, 0.2 M Ammonium tartrate dibasic		1	
18. (H4) 25% w/v Polyethylene glycol 3,350, 0.2 M Lithium sulfate monohydrate, 0.1 M BIS-TRIS pH 6.5			
9. (H5) 1.4 M Sodium citrate tribasic dihydrate, 0.1 M HEPES sodium pH 7.5		1	1
0. (H6) 20% w/v Polyethylene glycol 3,350, 0.2 M Sodium tartrate dibasic dihydrate		1	1
11. (H7) 20% w/v Polyethylene glycol 3,350, 0.2 M Magnesium formate dihydrate		1	1
22. (H8) 30% w/v Polyethylene glycol 4,000, 0.2 M Ammonium acetate, 0.1 M Sodium citrate tribasic dihydrate pH 5.6		1	†
33. (H9) 15% w/v Polyethylene glycol 3,350, 0.1 M Succinic Acid pH 7.0		1	†
04. (H10) 28% w/v Polyethylene glycol monomethyl ether 2,000, 0.1 M BIS-TRIS pH 6.5		1	†
95. (H11) 2.5 M 1,6-Hexanediol, 0.1 M Sodium citrate tribasic dihydrate pH 5.6		1	†
96. (H12) 20% v/v 2-Propanol, 20% w/v Polyethylene glycol 4,000, 0.1 M Sodium citrate tribasic dihydrate pH 5.6		+	1