

User Guide HR2-456 (pg 1)

Applications

GRAS reagent crystallization screen for proteins, including monoclonal antibodies, where medium molecular weight Polyethylene glycol is the primary reagent, sampling pH 4.5 to 10.

Features

- Generally Recognized As Safe reagent formulation
- Samples pH 4.5 to 10; 8 unique buffers
- Polyethylene glycol 1,000, MME 2,000, 3,350, & 4,000
- Vapor diffusion, microbatch, free interface diffusion

Refer to the enclosed GRAS Screen 6 Reagent Formulation for more information.

General Description

GRAS Screen $^{\rm TM}$ 6 was developed by Hampton Research for the crystallization of proteins, including monoclonal antibodies. Each of the chemicals in GRAS Screen 6 has been used under one or more of the following categories. As (1) a Generally Recognized As Safe (GRAS) substance, (2) a pharmaceutical excipient, (3) a normal physiological constituent, (4) a metabolic byproduct, and/or (5) a Everything Added to Food in the United States (EAFUS) substance. GRAS Screen 6 samples four medium molecular weight Polyethylene glycols (1,000, MME 2,000, 3,350, & 4,000) at three concentrations versus eight unique buffers encompassing pH 4.5 to 10. GRAS Screen 6 is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. GRAS Screen 6 is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.

Sample Preparation

The protein sample should be homogenous, as pure as is practically possible (>95%), and free of amorphous material. Remove amorphous material by centrifugation or microfiltration prior to use. The recommended sample concentration is 5 to 25 mg/ml in dilute (25 mM or less) buffer. For initial screens, the sample should be free of unnecessary additives in order to observe the effect of the GRAS Screen 6 reagents. However, agents that promote and preserve sample solubility, stability, and homogeneity can and should be included in the sample buffer. For additional sample preparation recommendations see Hampton Research Crystal Growth 101 - Preliminary Sample Preparation.

Preparing the Deep Well Block for Use

Allow the Deep Well Block and reagents to stabilize at room temperature, then centrifuge at 500 rpm for 5 minutes to remove stray drops from the film before removing the sealing film. The film can be removed by grasping a corner of the film and gently peeling the film from the plate. Alternatively, the film can be left intact, pierced to access reagents, and resealed using AlumaSeal II Sealing Film.

Performing the Screen Automated Method - Sitting Drop Vapor Diffusion

The Deep Well block is compatible with the SBS standard 96 well microplate format and is compatible with numerous automated liquid handling systems that accept 8×12 , 96 well assay blocks. Follow the automation manufacturer's recommendation for handling Deep Well blocks.

- 1. Using a 96 well sitting drop vapor diffusion plate, dispense the recommended volume (typically 50 to 100 microliters) of crystallization reagent from the Deep Well block into the reagent reservoirs of the crystallization plate.
- 2. Dispense the desired volume of crystallization reagent (typically 50 to 200 nanoliters) from the crystallization plate reservoir to the sitting drop well.
- 3. Transfer the equivalent volume of sample to the reagent drop in the sitting drop well.
- 4. Seal the crystallization plate using a clear sealing tape or film. View and score the experiment. See Hampton Research Crystal Growth 101 Viewing Crystallization Experiments for more information.
- 5. Seal the remaining reagent in the Deep Well block using AlumaSeal II Sealing Film.

Manual Method - Sitting Drop Vapor Diffusion

- 1. Using a 96 well sitting drop vapor diffusion plate, pipet the recommended volume (typically 50 to 100 microliters) of crystallization reagent from the Deep Well block into the reagent reservoirs of the crystallization plate. The Deep Well block is compatible with 8, 12, and 96 channel automated and manual pipettors. Use clean pipet tips for each reagent set, transfer and change pipet tips when changing reagents. For an 8 channel pipet, transfer reagents A1-H1 to reservoirs A1-H1 of the crystallization plate. Repeat this procedure for reagent columns 2 through 12. Change pipet tips when moving between reagent columns. For a 12 channel pipet, transfer reagents A1-A12 to reservoirs A1-A12 of the crystallization plate. Repeat this procedure for reagent rows B through H.
- 2. Using clean pipet tips, pipet the desired volume of crystallization reagent (typically 0.05 to 2 microliters) from the crystallization plate reservoir to the sitting drop well. Some 96 well crystallization plates allow this procedure to be performed using a multichannel pipet where other plates require the use of a single channel pipet. Change the pipet tip between reagents.
- 3. Using a clean pipet tip, pipet the same volume (typically 0.05 to 2 microliters) of sample to the reagent drop in the sitting drop well. Work carefully but quickly to minimize evaporation from the crystallization plate.
- 4. Seal the crystallization plate using an optically clear sealing film or tape. Seal the remaining reagent in the Deep Well block using AlumaSeal II sealing film.

Examine the Drop

Carefully examine the drops under a stereo microscope (10 to 100x magnification) after setting the screen. Record all observations and be particularly careful to scan the focal plane for small crystals. Observe the drops once each day for the first week, then once a week there after for up to 60 days, or until the drop dries out. Records should indicate whether the drop is clear, contains precipitate, and/or crystals. It is helpful to describe the drop contents using descriptive terms. Adding magnitude is also helpful. Example: 4+ yellow/brown fine precipitate, 3+ needle shaped crystals in 1+ white precipitate. One may

Solutions for Crystal Growth

User Guide HR2-456 (pg 2)

Figure 1
Typical observations in a crystallization experiment

Clear Drop

Skin / Precipitate

Precipitate

Precipitate /

Quasi Crystals

Microcrystals

Needle Cluster

Plates

Rod Cluster

Single Crystal also employ a numerical scoring scheme (Clear = 0, Crystal = 1. Precipitate = 2). Figure 1 shows typical examples of what one might observe in a crystallization experiment.

Interpreting GRAS Screen 6

Clear drops indicate that either the relative supersaturation of the sample and reagent is too low or the drop has not yet completed equilibration. If the drop remains clear after 3 to 4 weeks consider repeating the screen condition and doubling the sample concentration. If more than 70 of the 96 drops are clear, then consider doubling the sample concentration and repeating the entire screen.

Drops containing precipitate indicate either the relative supersaturation of the sample and reagent is too high, the sample has denatured, or the sample is heterogeneous. To reduce the relative supersaturation, dilute the sample twofold with sample buffer and repeat the screen condition. If more than 70 of the 96 drops contain precipitate and no crystals are present, then consider diluting the sample concentration in half by adding an equal volume of sample buffer to the sample and repeating the entire screen. If sample denaturation is suspect, take measures to stabilize the sample (add reducing agent, ligands, additives, salt, or other stabilizing agents). If the sample is impure, aggregated, or heterogeneous take measures to pursue homogeneity. It is possible to obtain crystals from precipitate so do not discard nor ignore a drop containing precipitate. If possible, examine drops containing precipitate under polarizing or UV optics to differentiate precipitate from microcrystals.

If the drop contains a macromolecular crystal the relative super-saturation of the sample and reagent is appropriate for crystal nucleation and growth. The next step is to optimize the preliminary conditions by varying PEG concentration, screen pH, vary temperature between 4 and 30°C, screen additives, and evaluate other crystallization variables including sample construct, purity, stability, and homogeneity in order to achieve the desired crystal size and quality.

When sample quantity permits, set GRAS Screen 6 in duplicate (4°C and 25°C) or triplicate (10°C and 20°C and 30°C) to evaluate the effect of temperature on crystallization. Compare the observations between the different temperatures to determine the effect of temperature on sample solubility. Different results in the same drops at different temperatures indicate that sample solubility is temperature dependent and that one should include temperature as a variable in subsequent screens and optimization experiments.

When sample quantity permits, set GRAS Screen 6 using multiple drops and drop ratios, such as 1:2, 1:1, and 2:1. See Hampton Research Crystal Growth 101: Drop Ratio for details.

GRAS Screen 6 Formulation

Crystallization reagents are formulated using the highest purity chemicals, ultrapure water (Formulated in Type 1+ ultrapure water: 18.2 megaohm-cm resistivity at 25°C, < 5 ppb Total Organic Carbon, bacteria free (<1 Bacteria (CFU/ml)), pyrogen free (<0.03 Endotoxin (EU/ml)), RNase-free (< 0.01 ng/mL) and DNase-free (< 4 pg/µL)) and are sterile filtered using 0.22 micron filters into sterile Deep Well blocks (no preservatives added). Store at -20°C. Best if used within 12 months of receipt.

Crystallization reagents can be reproduced using Hampton Research Optimize TM and StockOptions TM polyethylene glycols and buffers.

Recommended Reading

- 1. Introduction to protein crystallization. Alexander McPherson and Jose A. Gavira. Acta Crystallographica Section F Volume 70, Issue 1, pages 2-20, January 2014.
- 2. Optimization of crystallization conditions for biological macromolecules. Alexander McPherson and Bob Cudney. Acta Crystallographica Section F Volume 70, Issue 11, pages 1445–1467, November 2014.
- 3. Crystallization of intact monoclonal antibodies. Harris LJ, Skaletsky E, McPherson A. Proteins. 1995 Oct;23(2):285-9.
- 4. Crystalline monoclonal antibodies for subcutaneous delivery. Yang MX1, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6934-9.
- 5. Fast and Scalable Purification of a Therapeutic Full-Length Antibody Based on Process Crystallization. Dariusch Hekmat et al, Biotechnology and Bioengineering, Vol. 110, No. 9, September, 2013.
- 6. Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies: Screening and Optimization at Microbatch Scale. Yuguo Zang et al, PLoS One. 2011; 6(9): e25282.
- 7. Crystallization and Liquid-Liquid Phase Separation of Monoclonal Antibodies and Fc-Fusion Proteins: Screening Results. Suresh Vunnum et al, Biotechnol Prog. 2011 Jul;27(4):1054-67.

Hampton Research
34 Journey
Aliso Viejo, CA 92656-3317 U.S.A.
Tel: (949) 425-1321 • Fax: (949) 425-1611
Technical Support e-mail: tech@hrmail.com
Website: www.hamptonresearch.com

© 1991-2021 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Solutions	for	Courtal	Cross

Aliso Viejo, CA 92656-3317 U.S.A.
Tel: (949) 425-1321 • Fax: (949) 425-1611
e-mail: tech@hrmail.com
Website: www.hamptonresearch.com

© 1991 - 2020 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

RAS Screen™ 6		Solutions for Crystal Growth		HR2-456 Rea	eagent Formulation	
Well #	Buffer ¹	Titrant	Well #	PEG	Well #	pH^2
1. (A1)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	1. (A1)	4% w/v Polyethylene glycol 1,000	1. (A1)	4.6
2. (A2)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	2. (A2)	16% w/v Polyethylene glycol 1,000	2. (A2)	4.8
3. (A3)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	3. (A3)	28% w/v Polyethylene glycol 1,000	3. (A3)	5.1
4. (A4)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	4. (A4)	4% w/v Polyethylene glycol monomethyl ether 2,000	4. (A4)	4.6
5. (A5)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	5. (A5)	16% w/v Polyethylene glycol monomethyl ether 2,000	5. (A5)	4.9
6. (A6)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	6. (A6)	28% w/v Polyethylene glycol monomethyl ether 2,000	6. (A6)	5.1
7. (A7)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	7. (A7)	4% w/v Polyethylene glycol 3,350	7. (A7)	4.6
8. (A8)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	8. (A8)	16% w/v Polyethylene glycol 3,350	8. (A8)	4.8
9. (A9)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	9. (A9)	28% w/v Polyethylene glycol 3,350	9. (A9)	5.1
10. (A10)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	10. (A10)	4% w/v Polyethylene glycol 4,000	10. (A10)	4.6
11. (A11)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	11. (A11)	16% w/v Polyethylene glycol 4,000	11. (A11)	4.8
12. (A12)	0.1 M Sodium acetate trihydrate pH 4.5	HCI	12. (A12)	28% w/v Polyethylene glycol 4,000	12. (A12)	5.1
13. (B1)	0.1 M Succinic acid pH 5.5	NaOH	13. (B1)	4% w/v Polyethylene glycol 1,000	13. (B1)	5.6
14. (B2)	0.1 M Succinic acid pH 5.5	NaOH	14. (B2)	16% w/v Polyethylene glycol 1,000	14. (B2)	5.8
15. (B3)	0.1 M Succinic acid pH 5.5	NaOH	15. (B3)	28% w/v Polyethylene glycol 1,000	15. (B3)	6.1
16. (B4)	0.1 M Succinic acid pH 5.5	NaOH	16. (B4)	4% w/v Polyethylene glycol monomethyl ether 2,000	16. (B4)	5.6
17. (B5)	0.1 M Succinic acid pH 5.5	NaOH	17. (B5)	16% w/v Polyethylene glycol monomethyl ether 2,000	17. (B5)	5.8
18. (B6)	0.1 M Succinic acid pH 5.5	NaOH	18. (B6)	28% w/v Polyethylene glycol monomethyl ether 2,000	18. (B6)	6.1
19. (B7)	0.1 M Succinic acid pH 5.5	NaOH	19. (B7)	4% w/v Polyethylene glycol 3,350	19. (B7)	5.6
20. (B8)	0.1 M Succinic acid pH 5.5	NaOH	20. (B8)	16% w/v Polyethylene glycol 3,350	20. (B8)	5.8
21. (B9)	0.1 M Succinic acid pH 5.5	NaOH	21. (B9)	28% w/v Polyethylene glycol 3,350	21. (B9)	6.1
22. (B10)	0.1 M Succinic acid pH 5.5	NaOH	22. (B10)	4% w/v Polyethylene glycol 4,000	22. (B10)	5.6
23. (B11)	0.1 M Succinic acid pH 5.5	NaOH	23. (B11)	16% w/v Polyethylene glycol 4,000	23. (B11)	5.8
24. (B12)	0.1 M Succinic acid pH 5.5	NaOH	24. (B12)	28% w/v Polyethylene glycol 4,000	24. (B12)	6.1
25. (C1)	0.1 M BIS-TRIS pH 6.5	HCI	25. (C1)	4% w/v Polyethylene glycol 1,000	25. (C1)	6.4
26. (C2)	0.1 M BIS-TRIS pH 6.5	HCI	26. (C2)	16% w/v Polyethylene glycol 1,000	26. (C2)	6.4
27. (C3)	0.1 M BIS-TRIS pH 6.5	HCI	27. (C3)	28% w/v Polyethylene glycol 1,000	27. (C3)	6.5
28. (C4)	0.1 M BIS-TRIS pH 6.5	HCI	28. (C4)	4% w/v Polyethylene glycol monomethyl ether 2,000	28. (C4)	6.4
29. (C5)	0.1 M BIS-TRIS pH 6.5	HCI	29. (C5)	16% w/v Polyethylene glycol monomethyl ether 2,000	29. (C5)	6.4
30. (C6)	0.1 M BIS-TRIS pH 6.5	HCI	30. (C6)	28% w/v Polyethylene glycol monomethyl ether 2,000	30. (C6)	6.5
31. (C7)	0.1 M BIS-TRIS pH 6.5	HCI	31. (C7)	4% w/v Polyethylene glycol 3,350	31. (C7)	6.4
32. (C8)	0.1 M BIS-TRIS pH 6.5	HCI	32. (C8)	16% w/v Polyethylene glycol 3,350	32. (C8)	6.4
33. (C9)	0.1 M BIS-TRIS pH 6.5	HCI	33. (C9)	28% w/v Polyethylene glycol 3,350	33. (C9)	6.5
34. (C10)	0.1 M BIS-TRIS pH 6.5	HCI	34. (C10)	4% w/v Polyethylene glycol 4,000	34. (C10)	6.4
35. (C11)	0.1 M BIS-TRIS pH 6.5	HCI	35. (C11)	16% w/v Polyethylene glycol 4,000	35. (C11)	6.4
36. (C12)	0.1 M BIS-TRIS pH 6.5	HCI	36. (C12)	28% w/v Polyethylene glycol 4,000	36. (C12)	6.5
37. (D1)	0.1 M Sodium potassium phosphate pH 7.03	None	37. (D1)	4% w/v Polyethylene glycol 1,000	37. (D1)	7.2
38. (D2)	0.1 M Sodium potassium phosphate pH 7.03	None	38. (D2)	16% w/v Polyethylene glycol 1,000	38. (D2)	7.3
39. (D3)	0.1 M Sodium potassium phosphate pH 7.03	None	39. (D3)	28% w/v Polyethylene glycol 1,000	39. (D3)	7.6
40. (D4)	0.1 M Sodium potassium phosphate pH 7.03	None	40. (D4)	4% w/v Polyethylene glycol monomethyl ether 2,000	40. (D4)	7.2
41. (D5)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	41. (D5)	16% w/v Polyethylene glycol monomethyl ether 2,000	41. (D5)	7.3
42. (D6)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	42. (D6)	28% w/v Polyethylene glycol monomethyl ether 2,000	42. (D6)	7.6
43. (D7)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	43. (D7)	4% w/v Polyethylene glycol 3,350	43. (D7)	7.2
44. (D8)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	44. (D8)	16% w/v Polyethylene glycol 3,350	44. (D8)	7.3
45. (D9)	0.1 M Sodium potassium phosphate pH 7.03	None	45. (D9)	28% w/v Polyethylene glycol 3,350	45. (D9)	7.6
46. (D10)	0.1 M Sodium potassium phosphate pH 7.03	None	46. (D10)	4% w/v Polyethylene glycol 4,000	46. (D10)	7.2
47. (D11)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	47. (D11)	16% w/v Polyethylene glycol 4,000	47. (D11)	7.4
48. (D12)	0.1 M Sodium potassium phosphate pH 7.0 ³	None	48. (D12)	28% w/v Polyethylene glycol 4,000	48. (D12)	7.6

Reagents formulated in Type 1+ ultrapure grade water

¹ pH of 1.0 M buffer titrated with HCl or NaOH ² pH after buffer dilution with PEG and water (25°C)

³ 0.1 M Sodium potassium phosphate pH 7.0 = 0.0324 M Sodium phosphate monobasic monohydrate, 0.0676 M Potassium phosphate dibasic. No pH adjustment.

34 Journey Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611 e-mail: tech@hrmail.com Website: www.hamptonresearch.com

© 1991 - 2021 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

S Screen' 6 Solut			al Growth	TR2-400 Rea	HR2-456 Reagent Fo	
Well #	Buffer¹	Titrant	Well #	PEG	Well #	pH ²
49. (E1)	0.1 M HEPES pH 7.5	NaOH	49. (E1)	4% w/v Polyethylene glycol 1,000	49. (E1)	7.4
50. (E2)	0.1 M HEPES pH 7.5	NaOH	50. (E2)	16% w/v Polyethylene glycol 1,000	50. (E2)	7.5
51. (E3)	0.1 M HEPES pH 7.5	NaOH	51. (E3)	28% w/v Polyethylene glycol 1,000	51. (E3)	7.5
52. (E4)	0.1 M HEPES pH 7.5	NaOH	52. (E4)	4% w/v Polyethylene glycol monomethyl ether 2,000	52. (E4)	7.4
53. (E5)	0.1 M HEPES pH 7.5	NaOH	53. (E5)	16% w/v Polyethylene glycol monomethyl ether 2,000	53. (E5)	7.5
54. (E6)	0.1 M HEPES pH 7.5	NaOH	54. (E6)	28% w/v Polyethylene glycol monomethyl ether 2,000	54. (E6)	7.5
55. (E7)	0.1 M HEPES pH 7.5	NaOH	55. (E7)	4% w/v Polyethylene glycol 3,350	55. (E7)	7.4
56. (E8)	0.1 M HEPES pH 7.5	NaOH	56. (E8)	16% w/v Polyethylene glycol 3,350	56. (E8)	7.5
57. (E9)	0.1 M HEPES pH 7.5	NaOH	57. (E9)	28% w/v Polyethylene glycol 3,350	57. (E9)	7.5
58. (E10)	0.1 M HEPES pH 7.5	NaOH	58. (E10)	4% w/v Polyethylene glycol 4,000	58. (E10)	7.4
59. (E11)	0.1 M HEPES pH 7.5	NaOH	59. (E11)	16% w/v Polyethylene glycol 4,000	59. (E11)	7.5
60. (E12)	0.1 M HEPES pH 7.5	NaOH	60. (E12)	28% w/v Polyethylene glycol 4,000	60. (E12)	7.5
61. (F1)	0.1 M Tris pH 8.0	HCI	61. (F1)	4% w/v Polyethylene glycol 1,000	61. (F1)	8.0
62. (F2)	0.1 M Tris pH 8.0	HCI	62. (F2)	16% w/v Polyethylene glycol 1,000	62. (F2)	8.0
63. (F3)	0.1 M Tris pH 8.0	HCI	63. (F3)	28% w/v Polyethylene glycol 1,000	63. (F3)	8.1
64. (F4)	0.1 M Tris pH 8.0	HCI	64. (F4)	4% w/v Polyethylene glycol monomethyl ether 2,000	64. (F4)	8.0
65. (F5)	0.1 M Tris pH 8.0	HCI	65. (F5)	16% w/v Polyethylene glycol monomethyl ether 2,000	65. (F5)	8.0
66. (F6)	0.1 M Tris pH 8.0	HCI	66. (F6)	28% w/v Polyethylene glycol monomethyl ether 2,000	66. (F6)	8.1
67. (F7)	0.1 M Tris pH 8.0	HCI	67. (F7)	4% w/v Polyethylene glycol 3,350	67. (F7)	8.0
68. (F8)	0.1 M Tris pH 8.0	HCI	68. (F8)	16% w/v Polyethylene glycol 3,350	68. (F8)	8.0
69. (F9)	0.1 M Tris pH 8.0	HCI	69. (F9)	28% w/v Polyethylene glycol 3,350	69. (F9)	8.1
0. (F10)	0.1 M Tris pH 8.0	HCI	70. (F10)	4% w/v Polyethylene glycol 4,000	70. (F10)	8.0
, ,	0.1 M Tris pH 8.0	HCI	70. (F10) 71. (F11)	16% w/v Polyethylene glycol 4,000	70. (F10) 71. (F11)	
1. (F11)		HCI	, ,			8.0
2. (F12)	0.1 M Tris pH 8.0 0.1 M BIS-TRIS propane pH 9.0	HCI	72. (F12)	28% w/v Polyethylene glycol 4,000	72. (F12)	9.0
73. (G1)			73. (G1)	4% w/v Polyethylene glycol 1,000	73. (G1)	
74. (G2)	0.1 M BIS-TRIS propane pH 9.0	HCI	74. (G2)	16% w/v Polyethylene glycol 1,000 28% w/v Polyethylene glycol 1,000	74. (G2)	9.0
75. (G3)	0.1 M BIS-TRIS propane pH 9.0		75. (G3)	, , , , , , , , , , , , , , , , , , , ,	75. (G3)	9.1
76. (G4)	0.1 M BIS-TRIS propane pH 9.0	HCI	76. (G4)	4% w/v Polyethylene glycol monomethyl ether 2,000	76. (G4)	8.9
77. (G5)	0.1 M BIS-TRIS propane pH 9.0	HCI	77. (G5)	16% w/v Polyethylene glycol monomethyl ether 2,000	77. (G5)	9.0
78. (G6)	0.1 M BIS-TRIS propane pH 9.0	HCI	78. (G6)	28% w/v Polyethylene glycol monomethyl ether 2,000	78. (G6)	9.1
	0.1 M BIS-TRIS propane pH 9.0	HCI		4% w/v Polyethylene glycol 3,350	79. (G7)	
30. (G8)	0.1 M BIS-TRIS propane pH 9.0	HCI	80. (G8)	16% w/v Polyethylene glycol 3,350	80. (G8)	9.0
81. (G9)	0.1 M BIS-TRIS propane pH 9.0	HCI	81. (G9)	28% w/v Polyethylene glycol 3,350	81. (G9)	9.1
2. (G10)	0.1 M BIS-TRIS propane pH 9.0	HCI	82. (G10)	4% w/v Polyethylene glycol 4,000	82. (G10)	9.0
3. (G11)	0.1 M BIS-TRIS propane pH 9.0	HCI	83. (G11)	16% w/v Polyethylene glycol 4,000	83. (G11)	9.0
4. (G12)	0.1 M BIS-TRIS propane pH 9.0	HCI	84. (G12)	28% w/v Polyethylene glycol 4,000	84. (G12)	9.1
35. (H1)	0.1 M CHES pH 10.0	NaOH	85. (H1)	4% w/v Polyethylene glycol 1,000	85. (H1)	10.1
36. (H2)	0.1 M CHES pH 10.0	NaOH	86. (H2)	16% w/v Polyethylene glycol 1,000	86. (H2)	10.0
87. (H3)	0.1 M CHES pH 10.0	NaOH	87. (H3)	28% w/v Polyethylene glycol 1,000	87. (H3)	10.1
38. (H4)	0.1 M CHES pH 10.0	NaOH	88. (H4)	4% w/v Polyethylene glycol monomethyl ether 2,000	88. (H4)	10.0
39. (H5)	0.1 M CHES pH 10.0	NaOH	89. (H5)	16% w/v Polyethylene glycol monomethyl ether 2,000	89. (H5)	10.0
90. (H6)	0.1 M CHES pH 10.0	NaOH	90. (H6)	28% w/v Polyethylene glycol monomethyl ether 2,000	90. (H6)	10.1
91. (H7)	0.1 M CHES pH 10.0	NaOH	91. (H7)	4% w/v Polyethylene glycol 3,350	91. (H7)	10.1
92. (H8)	0.1 M CHES pH 10.0	NaOH	92. (H8)	16% w/v Polyethylene glycol 3,350	92. (H8)	10.1
93. (H9)	0.1 M CHES pH 10.0	NaOH	93. (H9)	28% w/v Polyethylene glycol 3,350	93. (H9)	10.1
4. (H10)	0.1 M CHES pH 10.0	NaOH	94. (H10)	4% w/v Polyethylene glycol 4,000	94. (H10)	10.0
5. (H11)	0.1 M CHES pH 10.0	NaOH	95. (H11)	16% w/v Polyethylene glycol 4,000	95. (H11)	10.1
6. (H12)	0.1 M CHES pH 10.0	NaOH	96. (H12)	28% w/v Polyethylene glycol 4,000	96. (H12)	10.1

Sample:	Sample Concentration:
Sample Buffer:	Date:
Reservoir Volume:	Temperature:
Drop Volume: Total μl Sample μ	l Reservoir μl Additive μl

1 Clear Drop

2 Phase Separation

4 Birefringent Precipitate or

3 Regular Granular Precipitate

6 Needles (1D Growth) 7 Plates (2D Growth)

5 Posettes or Spherulites

8 Single Crystals (3D Growth < 0.2 mm) 9 Single Crystals (3D Growth > 0.2 mm)

Microcrystals Date: Date: Date: Date: GRAS Screen[™] 6 - HR2-456 Scoring Sheet 0.1 M Sodium acetate trihydrate pH 4.5, 4% w/v Polyethylene glycol 1,000 2. (A2) 0.1 M Sodium acetate trihydrate pH 4.5, 16% w/v Polyethylene glycol 1,000 3. (A3) 0.1 M Sodium acetate trihydrate pH 4.5, 28% w/v Polyethylene glycol 1,000 4. (A4) 0.1 M Sodium acetate trihydrate pH 4.5, 4% w/v Polyethylene glycol monomethyl ether 2,000 5. (A5) 0.1 M Sodium acetate trihydrate pH 4.5, 16% w/v Polyethylene glycol monomethyl ether 2,000 6. (A6) 0.1 M Sodium acetate trihydrate pH 4.5, 28% w/v Polyethylene glycol monomethyl ether 2,000 7. (A7) 0.1 M Sodium acetate trihydrate pH 4.5, 4% w/v Polyethylene glycol 3,350 8. (A8) 0.1 M Sodium acetate trihydrate pH 4.5, 16% w/v Polyethylene glycol 3,350 9. (A9) 0.1 M Sodium acetate trihydrate pH 4.5, 28% w/v Polyethylene glycol 3,350 10. (A10) 0.1 M Sodium acetate trihydrate pH 4.5, 4% w/v Polyethylene glycol 4,000 11. (A11) 0.1 M Sodium acetate trihydrate pH 4.5, 16% w/v Polyethylene glycol 4,000 12. (A12) 0.1 M Sodium acetate trihydrate pH 4.5, 28% w/v Polyethylene glycol 4,000 13. (B1) 0.1 M Succinic acid pH 5.5, 4% w/v Polyethylene glycol 1,000 14. (B2) 0.1 M Succinic acid pH 5.5, 16% w/v Polyethylene glycol 1,000 15. (B3) 0.1 M Succinic acid pH 5.5, 28% w/v Polyethylene glycol 1,000 16. (B4) 0.1 M Succinic acid pH 5.5, 4% w/v Polyethylene glycol monomethyl ether 2,000 17. (B5) 0.1 M Succinic acid pH 5.5, 16% w/v Polyethylene glycol monomethyl ether 2,000 18. (B6) 0.1 M Succinic acid pH 5.5, 28% w/v Polyethylene glycol monomethyl ether 2,000 19. (B7) 0.1 M Succinic acid pH 5.5, 4% w/v Polyethylene glycol 3,350 20. (B8) 0.1 M Succinic acid pH 5.5, 16% w/v Polyethylene glycol 3,350 21. (B9) 0.1 M Succinic acid pH 5.5, 28% w/v Polyethylene glycol 3,350 22. (B10) 0.1 M Succinic acid pH 5.5, 4% w/v Polyethylene glycol 4,000 23. (B11) 0.1 M Succinic acid pH 5.5, 16% w/v Polyethylene glycol 4,000 24. (B12) 0.1 M Succinic acid pH 5.5, 28% w/v Polyethylene glycol 4,000 0.1 M BIS-TRIS pH 6.5, 4% w/v Polyethylene glycol 1,000 25. (C1) 26. (C2) 0.1 M BIS-TRIS pH 6.5, 16% w/v Polyethylene glycol 1,000 27. (C3) 0.1 M BIS-TRIS pH 6.5, 28% w/v Polyethylene glycol 1,000 28. (C4) 0.1 M BIS-TRIS pH 6.5, 4% w/v Polyethylene glycol monomethyl ether 2,000 29. (C5) 0.1 M BIS-TRIS pH 6.5, 16% w/v Polyethylene glycol monomethyl ether 2,000 30. (C6) 0.1 M BIS-TRIS pH 6.5, 28% w/v Polyethylene glycol monomethyl ether 2,000 31. (C7) 0.1 M BIS-TRIS pH 6.5, 4% w/v Polyethylene glycol 3,350 32. (C8) 0.1 M BIS-TRIS pH 6.5, 16% w/v Polyethylene glycol 3,350 33. (C9) 0.1 M BIS-TRIS pH 6.5, 28% w/v Polyethylene glycol 3,350 34. (C10) 0.1 M BIS-TRIS pH 6.5, 4% w/v Polyethylene glycol 4,000 35. (C11) 0.1 M BIS-TRIS pH 6.5, 16% w/v Polyethylene glycol 4,000 36. (C12) 0.1 M BIS-TRIS pH 6.5, 28% w/v Polyethylene glycol 4,000 37. (D1) 0.1 M Sodium potassium phosphate pH 7.0, 4% w/v Polyethylene glycol 1,000 38. (D2) 0.1 M Sodium potassium phosphate pH 7.0, 16% w/v Polyethylene glycol 1,000 39. (D3) 0.1 M Sodium potassium phosphate pH 7.0, 28% w/v Polyethylene glycol 1,000 40. (D4) 0.1 M Sodium potassium phosphate pH 7.0, 4% w/v Polyethylene glycol monomethyl ether 2,000 41. (D5) 0.1 M Sodium potassium phosphate pH 7.0, 16% w/v Polyethylene glycol monomethyl ether 2,000 42. (D6) 0.1 M Sodium potassium phosphate pH 7.0, 28% w/v Polyethylene glycol monomethyl ether 2,000 43. (D7) 0.1 M Sodium potassium phosphate pH 7.0, 4% w/v Polyethylene glycol 3,350 44. (D8) 0.1 M Sodium potassium phosphate pH 7.0, 16% w/v Polyethylene glycol 3,350 45. (D9) 0.1 M Sodium potassium phosphate pH 7.0, 28% w/v Polyethylene glycol 3,350 46. (D10) 0.1 M Sodium potassium phosphate pH 7.0, 4% w/v Polyethylene glycol 4,000 47. (D11) 0.1 M Sodium potassium phosphate pH 7.0, 16% w/v Polyethylene glycol 4,000 48. (D12) 0.1 M Sodium potassium phosphate pH 7.0, 28% w/v Polyethylene glycol 4,000

34 Journey Aliso Vicjo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611

© 1991 - 2020 Hampton Research Corp. all rights reserved Printed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Sample:		Sample Concentration:
Sample Buffer:		Date:
Reservoir Volume:		Temperature:
Dron Volume: Total ul Cample	ul Recerve	ir ul Additivo ul

1 Clear Drop

2 Phase Separation

3 Regular Granular Precipitate

6 Needles (1D Growth) 7 Plates (2D Growth)

5 Posettes or Spherulites

• riogaiai arailalai rioolpilalo	· · · · · · · · · · · · · · · · · · ·
4 Birefringent Precipitate or	8 Single Crystals (3D Growth < 0.2 mm)
Microcrystals	9 Single Crystals (3D Growth > 0.2 mm)

piume: Iotai μι Sampie μι Reservoir μι Additive μι	Microcrystals	9 Single C	rystals (3D Growt	h > 0.2 mm)
GRAS Screen [™] 6 - HR2-456 Scoring Sheet	Date:	Date:	Date:	Date:
49. (E1) 0.1 M HEPES pH 7.5, 4% w/v Polyethylene glycol 1,000				
50. (E2) 0.1 M HEPES pH 7.5, 16% w/v Polyethylene glycol 1,000				
51. (E3) 0.1 M HEPES pH 7.5, 28% w/v Polyethylene glycol 1,000				
52. (E4) 0.1 M HEPES pH 7.5, 4% w/v Polyethylene glycol monomethyl ether 2,000				
53. (E5) 0.1 M HEPES pH 7.5, 16% w/v Polyethylene glycol monomethyl ether 2,000				
54. (E6) 0.1 M HEPES pH 7.5, 28% w/v Polyethylene glycol monomethyl ether 2,000				
55. (E7) 0.1 M HEPES pH 7.5, 4% w/v Polyethylene glycol 3,350				
56. (E8) 0.1 M HEPES pH 7.5, 16% w/v Polyethylene glycol 3,350				
57. (E9) 0.1 M HEPES pH 7.5, 28% w/v Polyethylene glycol 3,350				
58. (E10) 0.1 M HEPES pH 7.5, 4% w/v Polyethylene glycol 4,000				
59. (E11) 0.1 M HEPES pH 7.5, 16% w/v Polyethylene glycol 4,000				
60. (E12) 0.1 M HEPES pH 7.5, 28% w/v Polyethylene glycol 4,000				
61. (F1) 0.1 M Tris pH 8.0, 4% w/v Polyethylene glycol 1,000				
62. (F2) 0.1 M Tris pH 8.0, 16% w/v Polyethylene glycol 1,000				
63. (F3) 0.1 M Tris pH 8.0, 28% w/v Polyethylene glycol 1,000				
64. (F4) 0.1 M Tris pH 8.0, 4% w/v Polyethylene glycol monomethyl ether 2,000			1	1
65. (F5) 0.1 M Tris pH 8.0, 16% w/v Polyethylene glycol monomethyl ether 2,000			1	
66. (F6) 0.1 M Tris pH 8.0, 28% w/v Polyethylene glycol monomethyl ether 2,000			1	1
67. (F7) 0.1 M Tris pH 8.0, 4% w/v Polyethylene glycol 3,350		1	1	1
68. (F8) 0.1 M Tris pH 8.0, 16% w/v Polyethylene glycol 3,350			1	1
69. (F9) 0.1 M Tris pH 8.0, 28% w/v Polyethylene glycol 3,350		1	1	1
70. (F10) 0.1 M Tris pH 8.0, 4% w/v Polyethylene glycol 4,000			+	
71. (F11) 0.1 M Tris pH 8.0, 16% w/v Polyethylene glycol 4,000				
72. (F12) 0.1 M Tris pH 8.0, 28% w/v Polyethylene glycol 4,000			+	
73. (G1) 0.1 M BIS-TRIS propane pH 9.0, 4% w/v Polyethylene glycol 1,000			+	
74. (G2) 0.1 M BIS-TRIS propane pH 9.0, 16% w/v Polyethylene glycol 1,000			+	
75. (G3) 0.1 M BIS-TRIS propane pH 9.0, 28% w/v Polyethylene glycol 1,000			+	
76. (G4) 0.1 M BIS-TRIS propane pH 9.0, 4% w/v Polyethylene glycol monomethyl ether 2,000			+	+
77. (G5) 0.1 M BIS-TRIS propane pH 9.0, 16% w/v Polyethylene glycol monomethyl ether 2,000			+	+
78. (G6) 0.1 M BIS-TRIS propane pH 9.0, 28% w/v Polyethylene glycol monomethyl ether 2,000			+	
79. (G7) 0.1 M BIS-TRIS propane pH 9.0, 4% w/v Polyethylene glycol 3,350			+	+
80. (G8) 0.1 M BIS-TRIS propane pH 9.0, 16% w/v Polyethylene glycol 3,350			+	+
81. (G9) 0.1 M BIS-TRIS propane pH 9.0, 28% w/v Polyethylene glycol 3,350		+	+	+
82. (G10) 0.1 M BIS-TRIS propane pH 9.0, 4% w/v Polyethylene glycol 4,000		+	+	+
83. (G11) 0.1 M BIS-TRIS propane pH 9.0, 16% w/v Polyethylene glycol 4,000			+	+
84. (G12) 0.1 M BIS-TRIS propane pH 9.0, 28% w/v Polyethylene glycol 4,000			+	
85. (H1) 0.1 M CHES pH 10.0, 4% w/v Polyethylene glycol 1,000			+	+
86. (H2) 0.1 M CHES pH 10.0, 16% w/v Polyethylene glycol 1,000			+	
			+	
87. (H3) 0.1 M CHES pH 10.0, 28% w/v Polyethylene glycol 1,000 88. (H4) 0.1 M CHES pH 10.0, 4% w/v Polyethylene glycol monomethyl ether 2,000		+	+	+
89. (H5) 0.1 M CHES pH 10.0, 4% w/v Polyethylene glycol monomethyl ether 2,000			+	
90. (H6) 0.1 M CHES pH 10.0, 16% w/v Polyethylene glycol monomethyl ether 2,000		+	+	+
	-	+	+	+
91. (H7) 0.1 M CHES pH 10.0, 4% w/v Polyethylene glycol 3,350		_	+	+
92. (H8) 0.1 M CHES pH 10.0, 16% w/v Polyethylene glycol 3,350			+	+
93. (H9) 0.1 M CHES pH 10.0, 28% w/v Polyethylene glycol 3,350			+	+
94. (H10) 0.1 M CHES pH 10.0, 4% w/v Polyethylene glycol 4,000			+	+
95. (H11) 0.1 M CHES pH 10.0, 16% w/v Polyethylene glycol 4,000			+	
96. (H12) 0.1 M CHES pH 10.0, 28% w/v Polyethylene glycol 4,000				

34 Journey Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611 e-mail: tech@hrmail.com Website: www.hamptonresearch.com

© 1991 - 2021 Hampton Research Corp. all rights reserved Primed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.