PEG/Ionic Liquid H

Solutions for Crystal Growth

User Guide HR2-462 (pg 1)

Applications

Crystallization screen for biological macromolecules, where Polyethylene glycols are are the primary, and ionic liquid the secondary reagent, sampling a broad range of pH without an added buffer.

Features

- · Samples a broad range of pH without an added buffer
- Polyethylene glycol 400, 1,000, 4,000, & 20,000 primary reagent
- 24 unique ionic liquids secondary reagent
- Vapor diffusion, microbatch, free interface diffusion

Refer to the enclosed PEG/Ionic Liquid HT Reagent Formulation for more information.

General Description

Ionic liquids have been found effective as additives in protein crystallization, with different ionic liquids used to increase crystallization rates and crystal size.

1-4 The inclusion of ionic liquids in crystallization experiments has been reported to lead to less crystal polymorphism as well as less precipitation at higher precipitant concentrations.

2-5 Ionic liquids have been used as additives to produce crystals in reagents that had previously not resulted in crystallization and results suggest ionic liquids may be applicable for the solubilization and crystallization of membrane proteins.

Ionic liquids are organic salts with melting points below 100°Celsius. They are thermally stable, nonflammable and demonstrate very low vapor pressure. Ionic liquids are soluble in a variety of organic and inorganic reagents and can be highly water soluble. Ionic liquids can demonstrate a degree of localized structuring about each ion compared to materials composed of disassociated ions, setting them apart from salt solutions. ^{5,6} Ionic liquids can participate in ionic, hydrophobic and hydrogen bond interactions. Ionic liquids are often chaotropic, composed of low symmetry ions with charge delocalization and weak intermolecular interactions. ¹ These organic salts generally consist of combinations of organic cations and either an organic or inorganic anion. Ionic liquids have been demonstrated to suppress protein aggregation and significantly increase protein folding yields. ^{7,8} Ionic liquids have been reported to stabilize protein activity and structure. ⁹⁻¹¹ The inclusion of the ionic liquid 1-n-Butyl-3-methylimidazolium tetrafluoroborate improved the thermal stability and solubility of integral membrane proteins for membrane proteomics study. ¹²

Some ionic liquids, such as ethylammonium nitrate have water-like characteristics, including the capacity for hydrogen bonding and the promotion of micelle formation by some surfactants.¹³ Many ionic liquids are also organic acids and have ionic character in addition to the hydrophobic behavior, which makes them unique and useful solvents in protein chemistry.

Variation of the anion and the cation as well as the utilization of both soft (formate and acetate) and hard anions (nitrate) in the reagents provides an additional dimension for evaluating the effects on ionic liquids on the solubility and crystallization of proteins. The screen contains 24 water soluble ionic liquids that comprise different cation (ammonium, cholin, imidazolium, phosphonium, and pyridinium) and anion (bromide, chloride, formate, nitrate, acetate,

phosphate, cyanamide, sulfate, fluoroborate, fluoroacetate, sulfonate, and tosylate) structures for a diverse PEG and Ionic Liquid formulation for use in the crystallization screening of biological macromolecules.

PEG/Ionic Liquid HT samples four different low molecular weight Polyethylene glycols (400, 1,000, 4,000, and 20,000) versus twenty four ionic liquids, encompassing a broad range of pH without an added buffer. PEG/Ionic Liquid HT is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. PEG/Ionic Liquid HT is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.

Sample Preparation

The protein sample should be homogenous, as pure as is practically possible (>95%), and free of amorphous material. Remove amorphous material by centrifugation or microfiltration prior to use. The recommended sample concentration is 5 to 25 mg/ml in dilute (25 mM or less) buffer. For initial screens, the sample should be free of unnecessary additives in order to observe the effect of the PEG/Ionic Liquid HT reagents. However, agents that promote and preserve sample solubility, stability, and homogeneity can and should be included in the sample buffer. For additional sample preparation recommendations see Hampton Research Crystal Growth 101 - Preliminary Sample Preparation.

Performing the Screen

Automated Method - Sitting Drop Vapor Diffusion

The Deep Well block is compatible with the SBS standard 96 well microplate format and is compatible with numerous automated liquid handling systems that accept 8 x 12, 96 well assay blocks. Follow the automation manufacturer's recommendation for handling Deep Well blocks.

- 1. Using a 96 well sitting drop vapor diffusion plate, dispense the recommended volume (typically 50 to 100 microliters) of crystallization reagent from the Deep Well block into the reagent reservoirs of the crystallization plate
- 2. Dispense the desired volume of crystallization reagent (typically 50 to 200 nanoliters) from the crystallization plate reservoir to the sitting drop well.
- 3. Transfer the equivalent volume of sample to the reagent drop in the sitting drop well.
- 4. Seal the crystallization plate using a clear sealing tape or film. View and score the experiment. See Hampton Research Crystal Growth 101 Viewing Crystallization Experiments for more information.
- Seal the remaining reagent in the Deep Well block using AlumaSeal II Sealing Film.

Manual Method - Sitting Drop Vapor Diffusion

1. Using a 96 well sitting drop vapor diffusion plate, pipet the recommended volume (typically 50 to 100 microliters) of crystallization reagent from the Deep Well block into the reagent reservoirs of the crystallization plate. The Deep Well block is compatible with 8, 12, and 96 channel automated and manual pipettors. Use clean pipet tips for each reagent set, transfer and change pipet tips when changing reagents. For an 8 channel pipet, trans-

PEG/Ionic Liquid H [™]

Solutions for Crystal Growth

User Guide HR2-462 (pg 2)

Figure 1Typical observations in a crystallization experiment

Clear Drop

Skin / Precipitate

Precipitate

Precipitate / Phase

Quasi Crystals

Microcrystals

Needle Cluster

Plates

Rod Cluster

Single Crystal

fer reagents A1-H1 to reservoirs A1-H1 of the crystallization plate. Repeat this procedure for reagent columns 2 through 12. Change pipet tips when moving between reagent columns. For a 12 channel pipet, transfer reagents A1-A12 to reservoirs A1-A12 of the crystallization plate. Repeat this procedure for reagent rows B through H.

- 2. Using clean pipet tips, pipet the desired volume of crystal-lization reagent (typically 0.05 to 2 microliters) from the crystallization plate reservoir to the sitting drop well. Some 96 well crystallization plates allow this procedure to be performed using a multichannel pipet where other plates require the use of a single channel pipet. Change the pipet tip between reagents.
- 3. Using a clean pipet tip, pipet the same volume (typically 0.05 to 2 microliters) of sample to the reagent drop in the sitting drop well. Work carefully but quickly to minimize evaporation from the crystallization plate.
- 4. Seal the crystallization plate using an optically clear sealing film or tape. Seal the remaining reagent in the Deep Well block using AlumaSeal II sealing film.

Examine the Drop

Carefully examine the drops under a stereo microscope (10 to 100x magnification) after setting the screen. Record all observations and be particularly careful to scan the focal plane for small crystals. Observe the drops once each day for the first week, then once a week there after for up to 60 days, or until the drop dries out. Records should indicate whether the drop is clear, contains precipitate, and/or crystals. It is helpful to describe the drop contents using descriptive terms. Adding magnitude is also helpful. Example: 4+ yellow/brown fine precipitate, 3+ needle shaped crystals in 1+ white precipitate. One may also employ a numerical scoring scheme (Clear = 0, Crystal = 1. Precipitate = 2). Figure 1 shows typical examples of what one might observe in a crystallization experiment.

Interpreting the Screen Results

Clear drops indicate that either the relative supersaturation of the sample and reagent is too low or the drop has not yet completed equilibration. If the drop remains clear after 3 to 4 weeks consider repeating the screen condition and doubling the sample concentration. If more than 70 of the 96 drops are clear, then consider doubling the sample concentration and repeating the entire screen.

Drops containing precipitate indicate either the relative supersaturation of the sample and reagent is too high, the sample has denatured, or the sample is heterogeneous. To reduce the relative supersaturation, dilute the sample twofold with sample buffer and repeat the screen condition. If more than 70 of the 96 drops contain precipitate and no crystals are present, then consider diluting the sample concentration in half by adding an equal volume of sample buffer to the sample and repeating the entire screen. If sample denaturation is suspect, take measures to stabilize the sample (add reducing agent, ligands, additives, salt, or other stabilizing agents). If the sample is impure, aggregated, or heterogeneous take measures to pursue homogeneity. It is possible to obtain crystals from precipitate so do not discard nor ignore a drop containing precipitate. If possible, examine drops containing precipitate under polarizing or UV optics to differentiate precipitate from microcrystals.

If the drop contains a macromolecular crystal the relative supersaturation of the sample and reagent is appropriate for crystal nucleation and growth. The next step is to optimize the preliminary conditions by varying Ionic Liquid and/or PEG concentration, screen pH, vary temperature between 4 and 30°C, screen additives, and evaluate other crystallization variables including sample construct, purity, stability, and homogeneity in order to achieve the desired crystal size and quality.

When sample quantity permits, set the screen in duplicate (4°C and 25°C) or triplicate (10°C and 20°C and 30°C) to evaluate the effect of temperature on crystallization. Compare the observations between the different temperatures to determine the effect of temperature on sample solubility. Different results in the same drops at different temperatures indicate that sample solubility is temperature dependent and that one should include temperature as a variable in subsequent screens and optimization experiments.

When sample quantity permits, set the screen using multiple drops and drop ratios, such as 1:2, 1:1, and 2:1. See Hampton Research Crystal Growth 101: Drop Ratio for details.

Formulation

Crystallization reagents are formulated using the highest purity chemicals, ultrapure water (Formulated in Type 1+ ultrapure water: 18.2 megaohm-cm resistivity at 25°C, < 5 ppb Total Organic Carbon, bacteria free (<1 Bacteria (CFU/ml)), pyrogen free (<0.03 Endotoxin (EU/ml)), RNase-free (< 0.01 ng/mL) and DNase-free (< 4 pg/µL)) and are sterile filtered using 0.22 micron filters into a sterile block (no preservatives added). Store between -20 and 20°C. Best if used within 12 months of receipt.

Crystallization reagents can be reproduced using Hampton Research Optimize $^{\text{\tiny IM}}$ polyethylene glycols and Ionic Liquid Screen or Custom Shop $^{\text{\tiny IM}}$ Ionic Liquid Screen individual reagents.

Recommended Reading

- Introduction to protein crystallization. Alexander McPherson and Jose A. Gavira. Acta Crystallographica Section F Volume 70, Issue 1, pages 2–20, January 2014.
- Optimization of crystallization conditions for biological macromolecules. Alexander McPherson and Bob Cudney. Acta Crystallographica Section F Volume 70, Issue 11, pages 1445–1467, November 2014.

PEG/Ionic Liquid H

Solutions for Crystal Growth

User Guide HR2-462 (pg 3)

- Pusey, M.L., Paley, M.S., Turner, M.B., and Rogers, R.D. 2007. Protein crystallization using room temperature ionic liquids. Crystal Growth & Design. 74:787-793.
- Hekmat, D., Hebel, D., Sebastian, J. Schmidt, M., and Weuster-Botz, D. 2007. Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotech. Lett. 29:703-1711.
- Garlitz, J.A., Summers, C.A., Flowers, R.A. and Borgstahl, G.E.O. 1999. Ethylammonium nitrate: A protein crystallization reagent. Acta Cryst. D53:2037-2038.
- Judge, R.A., Takahashi, S., Longnecker, K.L. Fry, E.H., Abad-Zapatero, C., and Chi, M.L. 2009. The effects of ionic liquids on protein crystallization and X-ray diffraction resolution. Crystal Growth & Design 9:3463-3469.
- Bowran, D.T., Hardacre, C. Holbrey, J.D., McMath, J.E., and Soper, A.K. 2003. J. Chem. Phys. 118:173-178.
- Cadena, C., Zhao, Q., Snurr, and R.Q., Maginn, E.J. 2006. J. Chem. Phys. B 110:2821-2832.
- Summers, C.A. and Flowers, R.A. 2000. Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science 9:2001-2008.
- Lange, C., Patil, G., and Rudolph, R. 2005. Ionic liquids as refolding additives: N'-alkyl and N'-(w-hydroxyalkyl) N-methylimidazolium chloride. Protein Science 14:2693-2701.
- Lozano, P., de Diego, T. Guegan, J.P., Vaultier, M., and Ibora, J.L. 2001. Stabilization of a-chymotrypsin by ionic liquids in transesterification reactions. Biotehnol. Bioeng. 75:363-369.
- Baker, S.N., McCleskey, T.M., Pandy, S., and Baker, G.A. 2004. Fluorescence study of protein thermostability in ionic liquids. Chem. Commun. 2004:940-941.
- De Diego, T., Lozano, P., Gmouth, S. Vaultier, M., and Iborra, J.L. 2004. Fluorescence and CD spectroscopic analysis of the a-chymotrypsin stabilization by the ionic liquid 1-ethyl-3-methylmidazolium bis[(trifluormethyl)sulfonyl]amide. Biotechnol. Bioeng. 88:916-924.
- Sun, L., Tao, D., Han, B., Ma, J., Zhu, G., Liang, Z., Shan, Y., Zhang, L., and Zhang, Y. 2010. Ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate for shotgun membrane proteomics. Anal. Bioanal. Chem. DOI 10.1007/s0216-010-4381-5.
- Evans, D.F., Yamauchi, A., Roman, R., and Casassa, E.Z. 1982. J. Colloids Interface Sci. 88:89-96
- Proteins in Ionic Liquids: Current Status of Experiments and Simulations. Christian Schröde, Top Curr Chem (J). 2017; 375(2): 25.
- Ionic Liquids as Stabilization and Refolding Additives and Solvents for Proteins. Fujita K. Adv Biochem Eng Biotechnol. 2018 Jul 13. doi: 10.1007/10_2018_65.
- Fujita K. (2018) Ionic Liquids as Stabilization and Refolding Additives and Solvents for Proteins. In: Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg.

Well #	Ionic Liquid	Well #	Polymer	Well #	рН◊
1. (A1)	5% w/v Tetraethylammonium bromide	1. (A1)	30% v/v Polyethylene glycol 400	1. (A1)	6.0
2. (A2)	5% w/v Tetraethylammonium bromide	2. (A2)	25% w/v Polyethylene glycol 1,000	2. (A2)	5.4
3. (A3)	5% w/v Tetraethylammonium bromide	3. (A3)	20% w/v Polyethylene glycol 4,000	3. (A3)	6.6
4. (A4)	5% w/v Tetraethylammonium bromide	4. (A4)	15% w/v Polyethylene glycol 20,000	4. (A4)	6.5
5. (A5)	5% w/v Benzyltriethylammonium chloride	5. (A5)	30% v/v Polyethylene glycol 400	5. (A5)	6.0
6. (A6)	5% w/v Benzyltriethylammonium chloride	6. (A6)	25% w/v Polyethylene glycol 1,000	6. (A6)	5.3
7. (A7)	5% w/v Benzyltriethylammonium chloride	7. (A7)	20% w/v Polyethylene glycol 4,000	7. (A7)	6.2
8. (A8)	5% w/v Benzyltriethylammonium chloride	8. (A8)	15% w/v Polyethylene glycol 20,000	8. (A8)	6.1
9. (A9)	5% w/v 2-Hydroxyethylammonium formate	9. (A9)	30% v/v Polyethylene glycol 400	9. (A9)	5.6
10. (A10)	5% w/v 2-Hydroxyethylammonium formate	10. (A10)	25% w/v Polyethylene glycol 1,000	10. (A10)	5.4
11. (A11)	5% w/v 2-Hydroxyethylammonium formate	11. (A11)	20% w/v Polyethylene glycol 4,000	11. (A11)	5.3
12. (A12)	5% w/v 2-Hydroxyethylammonium formate	12. (A12)	15% w/v Polyethylene glycol 20,000	12. (A12)	5.2
13. (B1)	5% w/v Ethylammonium nitrate	13. (B1)	30% v/v Polyethylene glycol 400	13. (B1)	5.9
14. (B2)	5% w/v Ethylammonium nitrate	14. (B2)	25% w/v Polyethylene glycol 1,000	14. (B2)	4.9
15. (B3)	5% w/v Ethylammonium nitrate	15. (B3)	20% w/v Polyethylene glycol 4,000	15. (B3)	5.5
16. (B4)	5% w/v Ethylammonium nitrate	16. (B4)	15% w/v Polyethylene glycol 20,000	16. (B4)	5.7
17. (B5)	5% w/v Cholin acetate	17. (B5)	30% v/v Polyethylene glycol 400	17. (B5)	7.1
18. (B6)	5% w/v Cholin acetate	18. (B6)	25% w/v Polyethylene glycol 1,000	18. (B6)	7.0
19. (B7)	5% w/v Cholin acetate	19. (B7)	20% w/v Polyethylene glycol 4,000	19. (B7)	7.0
20. (B8)	5% w/v Cholin acetate	20. (B8)	15% w/v Polyethylene glycol 20,000	20. (B8)	6.9
21. (B9)	5% w/v Choline dihydrogen phosphate	21. (B9)	30% v/v Polyethylene glycol 400	21. (B9)	5.4
22. (B10)	5% w/v Choline dihydrogen phosphate	22. (B10)	25% w/v Polyethylene glycol 1,000	22. (B10)	5.0
23. (B11)	5% w/v Choline dihydrogen phosphate	23. (B11)	20% w/v Polyethylene glycol 4,000	23. (B11)	
24. (B12)	5% w/v Choline dihydrogen phosphate	24. (B12)	15% w/v Polyethylene glycol 20,000	24. (B12)	4.8
25. (C1)	5% w/v 1-Ethyl-3-methylimidazolium acetate	25. (C1)	30% v/v Polyethylene glycol 400	25. (C1)	6.8
26. (C2)	5% w/v 1-Ethyl-3-methylimidazolium acetate	26. (C2)	25% w/v Polyethylene glycol 1,000	26. (C2)	6.6
27. (C3)	5% w/v 1-Ethyl-3-methylimidazolium acetate	27. (C3)	20% w/v Polyethylene glycol 4,000	27. (C3)	6.5
28. (C4)	5% w/v 1-Ethyl-3-methylimidazolium acetate	28. (C4)	15% w/v Polyethylene glycol 20,000	28. (C4)	6.5
29. (C5)	5% w/v 1-Butyl-3-methylimidazolium chloride	29. (C5)	30% v/v Polyethylene glycol 400	29. (C5)	6.2
30. (C6)	5% w/v 1-Butyl-3-methylimidazolium chloride	30. (C6)	25% w/v Polyethylene glycol 1,000	30. (C6)	7.1
31. (C7)	5% w/v 1-Butyl-3-methylimidazolium chloride	31. (C7)	20% w/v Polyethylene glycol 4,000	31. (C7)	7.4
32. (C8)	5% w/v 1-Butyl-3-methylimidazolium chloride	32. (C8)	15% w/v Polyethylene glycol 20,000	32. (C8)	7.5
33. (C9)	5% w/v 1-Ethyl-3-methylimidazolium chloride	33. (C9)	30% v/v Polyethylene glycol 400	33. (C9)	6.0
	5% w/v 1-Ethyl-3-methylimidazolium chloride	34. (C10)		34. (C10)	
35. (C11)		35. (C11)	20% w/v Polyethylene glycol 4,000	35. (C11)	
36. (C12)	5% w/v 1-Ethyl-3-methylimidazolium chloride	36. (C12)	15% w/v Polyethylene glycol 20,000	36. (C12)	
37. (D1)	5% w/v 1-Hexyl-3-methylimidazolium chloride	37. (D1)	30% v/v Polyethylene glycol 400	37. (D1)	6.1
38. (D2)	5% w/v 1-Hexyl-3-methylimidazolium chloride	38. (D2)	25% w/v Polyethylene glycol 1,000	38. (D2)	6.4
39. (D3)	5% w/v 1-Hexyl-3-methylimidazolium chloride	39. (D3)	20% w/v Polyethylene glycol 4,000	39. (D3)	6.5
40. (D4)	5% w/v 1-Hexyl-3-methylimidazolium chloride	40. (D4)	15% w/v Polyethylene glycol 20,000	40. (D4)	6.5
41. (D5)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide	41. (D5)	30% v/v Polyethylene glycol 400	41. (D5)	6.4
42. (D6)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide	42. (D6)	25% w/v Polyethylene glycol 1,000	42. (D6)	7.5
43. (D7)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide	43. (D7)	20% w/v Polyethylene glycol 4,000	43. (D7)	8.2
44. (D8)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide	44. (D8)	15% w/v Polyethylene glycol 20,000	44. (D8)	8.0
45. (D9)	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate	45. (D9)	30% v/v Polyethylene glycol 400	45. (D9)	3.0
46. (D10)	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate	46. (D10)	25% w/v Polyethylene glycol 1,000	46. (D10)	
47. (D11)	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate	47. (D11)	20% w/v Polyethylene glycol 4,000	47. (D11)	
48. (D12)	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate	48. (D12)	15% w/v Polyethylene glycol 20,000	48. (D12)	
- ()	2.1 1,0 2opinuto	- (- :-)		- ()	

Reagents formulated in Type 1+ ultrapure grade water

♦ Measured pH at 25°C, no pH adjustment made to reagent

Well #	Ionic Liquid	Well #	Polymer	Well #	рН◊
49. (E1)	5% w/v 1,3-Dimethylimidazolium methyl sulfate	49. (E1)	30% v/v Polyethylene glycol 400	49. (E1)	5.6
50. (E2)	5% w/v 1,3-Dimethylimidazolium methyl sulfate	50. (E2)	25% w/v Polyethylene glycol 1,000	50. (E2)	3.7
51. (E3)	5% w/v 1,3-Dimethylimidazolium methyl sulfate	51. (E3)	20% w/v Polyethylene glycol 4,000	51. (E3)	4.0
52. (E4)	5% w/v 1,3-Dimethylimidazolium methyl sulfate	52. (E4)	15% w/v Polyethylene glycol 20,000	52. (E4)	3.8
53. (E5)	5% w/v 1-Butyl-3-methylimidazolium methyl sulfate	53. (E5)	30% v/v Polyethylene glycol 400	53. (E5)	3.6
54. (E6)	5% w/v 1-Butyl-3-methylimidazolium methyl sulfate	54. (E6)	25% w/v Polyethylene glycol 1,000	54. (E6)	2.7
55. (E7)	5% w/v 1-Butyl-3-methylimidazolium methyl sulfate	55. (E7)	20% w/v Polyethylene glycol 4,000	55. (E7)	2.7
56. (E8)	5% w/v 1-Butyl-3-methylimidazolium methyl sulfate	56. (E8)	15% w/v Polyethylene glycol 20,000	56. (E8)	2.6
57. (E9)	5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate	57. (E9)	30% v/v Polyethylene glycol 400	57. (E9)	6.9
58. (E10)	5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate	58. (E10)	25% w/v Polyethylene glycol 1,000	58. (E10)	5.4
59. (E11)	5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate	59. (E11)	20% w/v Polyethylene glycol 4,000	59. (E11)	5.7
60. (E12)	5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate	60. (E12)	15% w/v Polyethylene glycol 20,000	60. (E12)	5.6
61. (F1)	5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate	61. (F1)	30% v/v Polyethylene glycol 400	61. (F1)	7.2
62. (F2)	5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate	62. (F2)	25% w/v Polyethylene glycol 1,000	62. (F2)	7.7
63. (F3)	5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate	63. (F3)	20% w/v Polyethylene glycol 4,000	63. (F3)	7.9
64. (F4)	5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate	64. (F4)	15% w/v Polyethylene glycol 20,000	64. (F4)	7.9
65. (F5)	5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate	65. (F5)	30% v/v Polyethylene glycol 400	65. (F5)	5.6
66. (F6)	5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate	66. (F6)	25% w/v Polyethylene glycol 1,000	66. (F6)	3.8
67. (F7)	5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate	67. (F7)	20% w/v Polyethylene glycol 4,000	67. (F7)	3.6
68. (F8)	5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate	68. (F8)	15% w/v Polyethylene glycol 20,000	68. (F8)	3.4
69. (F9)	5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate	69. (F9)	30% v/v Polyethylene glycol 400	69. (F9)	6.1
70. (F10)	5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate	70. (F10)	25% w/v Polyethylene glycol 1,000	70. (F10)	4.1
71. (F11)	5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate		20% w/v Polyethylene glycol 4,000	71. (F11)	4.0
72. (F12)	5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate		15% w/v Polyethylene glycol 20,000	72. (F12)	3.5
73. (G1)	5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate	73. (G1)	30% v/v Polyethylene glycol 400	73. (G1)	5.8
74. (G2)	5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate	74. (G2)	25% w/v Polyethylene glycol 1,000	74. (G2)	3.9
75. (G3)	5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate	75. (G3)	20% w/v Polyethylene glycol 4,000	75. (G3)	3.9
76. (G4)	5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate	76. (G4)	15% w/v Polyethylene glycol 20,000	76. (G4)	3.4
77. (G5)	5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate	77. (G5)	30% v/v Polyethylene glycol 400	77. (G5)	5.4
78. (G6)	5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate	78. (G6)	25% w/v Polyethylene glycol 1,000	78. (G6)	3.6
79. (G7)	5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate	79. (G7)	20% w/v Polyethylene glycol 4,000	79. (G7)	3.7
80. (G8)	5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate	80. (G8)	15% w/v Polyethylene glycol 20,000	80. (G8)	3.4
81. (G9)	5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate	81. (G9)	30% v/v Polyethylene glycol 400	81. (G9)	5.4
82. (G10)	5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate	82. (G10)	25% w/v Polyethylene glycol 1,000	82. (G10)	
83. (G11)	5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate	83. (G11)	20% w/v Polyethylene glycol 4,000	83. (G11)	4.3
84. (G12)	5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate			84. (G12)	5.2
85. (H1)	5% w/v Tetrabutylphosphonium bromide	85. (H1)	30% v/v Polyethylene glycol 400	85. (H1)	4.2
86. (H2)	5% w/v Tetrabutylphosphonium bromide	86. (H2)	25% w/v Polyethylene glycol 1,000	86. (H2)	2.7
87. (H3)	5% w/v Tetrabutylphosphonium bromide	87. (H3)	20% w/v Polyethylene glycol 4,000	87. (H3)	2.8
88. (H4)	5% w/v Tetrabutylphosphonium bromide	88. (H4)	15% w/v Polyethylene glycol 20,000	88. (H4)	2.8
89. (H5)	5% w/v Triisobutylmethylphosphonium tosylate	89. (H5)	30% v/v Polyethylene glycol 400	89. (H5)	2.7
90. (H6)	5% w/v Triisobutylmethylphosphonium tosylate	90. (H6)	25% w/v Polyethylene glycol 1,000	90. (H6)	2.4
91. (H7)	5% w/v Triisobutylmethylphosphonium tosylate	91. (H7)	20% w/v Polyethylene glycol 4,000	91. (H7)	2.5
92. (H8)	5% w/v Triisobutylmethylphosphonium tosylate	92. (H8)	15% w/v Polyethylene glycol 20,000	92. (H8)	2.5
93. (H9)	5% w/v 1-Butylpyridinium chloride	93. (H9)	30% v/v Polyethylene glycol 400	93. (H9)	6.0
94. (H10)	5% w/v 1-Butylpyridinium chloride	` '	25% w/v Polyethylene glycol 1,000	94. (H10)	
95. (H11)	5% w/v 1-Butylpyridinium chloride		20% w/v Polyethylene glycol 4,000	95. (H11)	
96. (H12)	5% w/v 1-Butylpyridinium chloride		15% w/v Polyethylene glycol 20,000	96. (H12)	
		,			

Reagents formulated in Type 1+ ultrapure grade water

♦ Measured pH at 25°C, no pH adjustment made to reagent

Sample:	Sample Concentration:
Sample Buffer:	Date:
Reservoir Volume:	Temperature:
Drop Volume: Total μl Sample μl Res	servoir μl Additive μl

1 Clear Drop

2 Phase Separation

3 Regular Granular Precipitate

6 Needles (1D Growth)

5 Posettes or Spherulites 7 Plates (2D Growth)

voir Volume:μl Sampleμl Reservoirμl Additiveμl		3 Regular Granula4 Birefringent Prec Microcrystals	Precipitate or 8 Single Crystals (3D Growth < 0.2 mm)			
PEG/I	onic Liquid HT™ - HR2-462 Scoring Sheet		Date:	Date:	Date:	Date:
1. (A1)	5% w/v Tetraethylammonium bromide, 30% v/v Polyethylene glycol 400				1	†
2. (A2)	5% w/v Tetraethylammonium bromide, 25% w/v Polyethylene glycol 1,000				1	1
3. (A3)	5% w/v Tetraethylammonium bromide, 20% w/v Polyethylene glycol 4,000				İ	
4. (A4)	5% w/v Tetraethylammonium bromide, 15% w/v Polyethylene glycol 20,000					
5. (A5)	5% w/v Benzyltriethylammonium chloride, 30% v/v Polyethylene glycol 400					1
6. (A6)	5% w/v Benzyltriethylammonium chloride, 25% w/v Polyethylene glycol 1,000					
7. (A7)	5% w/v Benzyltriethylammonium chloride, 20% w/v Polyethylene glycol 4,000					
3. (A8)	5% w/v Benzyltriethylammonium chloride, 15% w/v Polyethylene glycol 20,000					
9. (A9)	5% w/v 2-Hydroxyethylammonium formate, 30% v/v Polyethylene glycol 400					
	5% w/v 2-Hydroxyethylammonium formate, 25% w/v Polyethylene glycol 1,000					
, ,	5% w/v 2-Hydroxyethylammonium formate, 20% w/v Polyethylene glycol 4,000				1	1
, ,	5% w/v 2-Hydroxyethylammonium formate, 15% w/v Polyethylene glycol 20,000				1	1
13. (B1)	5% w/v Ethylammonium nitrate, 30% v/v Polyethylene glycol 400					1
14. (B2)	5% w/v Ethylammonium nitrate, 25% w/v Polyethylene glycol 1,000				†	†
15. (B3)	5% w/v Ethylammonium nitrate, 20% w/v Polyethylene glycol 4,000				1	+
16. (B4)	5% w/v Ethylammonium nitrate, 15% w/v Polyethylene glycol 20,000				1	+
17. (B5)	5% w/v Cholin acetate, 30% v/v Polyethylene glycol 400				1	+
18. (B6)	5% w/v Cholin acetate, 25% w/v Polyethylene glycol 1,000				1	1
19. (B7)	5% w/v Cholin acetate, 20% w/v Polyethylene glycol 4,000				†	1
20. (B8)	5% w/v Cholin acetate, 15% w/v Polyethylene glycol 20,000				1	1
21. (B9)	5% w/v Choline dihydrogen phosphate, 30% v/v Polyethylene glycol 400					1
. ,	5% w/v Choline dihydrogen phosphate, 25% w/v Polyethylene glycol 1,000				+	+
· ,	5% w/v Choline dihydrogen phosphate, 20% w/v Polyethylene glycol 4,000					1
	5% w/v Choline dihydrogen phosphate, 15% w/v Polyethylene glycol 20,000				+	+
25. (C1)	5% w/v 1-Ethyl-3-methylimidazolium acetate, 30% v/v Polyethylene glycol 400					1
26. (C2)	5% w/v 1-Ethyl-3-methylimidazolium acetate, 25% w/v Polyethylene glycol 1,000				+	+
27. (C3)	5% w/v 1-Ethyl-3-methylimidazolium acetate, 20% w/v Polyethylene glycol 4,000				1	1
28. (C4)	5% w/v 1-Ethyl-3-methylimidazolium acetate, 15% w/v Polyethylene glycol 20,000				†	†
29. (C5)	5% w/v 1-Butyl-3-methylimidazolium chloride, 30% v/v Polyethylene glycol 400				+	
30. (C6)	5% w/v 1-Butyl-3-methylimidazolium chloride, 25% w/v Polyethylene glycol 1,000					1
31. (C7)	5% w/v 1-Butyl-3-methylimidazolium chloride, 20% w/v Polyethylene glycol 4,000				+	+
32. (C8)	5% w/v 1-Butyl-3-methylimidazolium chloride, 15% w/v Polyethylene glycol 20,000				+	+
33. (C9)	5% w/v 1-Ethyl-3-methylimidazolium chloride, 30% v/v Polyethylene glycol 400				+	+
. ,	5% w/v 1-Ethyl-3-methylimidazolium chloride, 25% w/v Polyethylene glycol 1,000				1	1
	5% w/v 1-Ethyl-3-methylimidazolium chloride, 20% w/v Polyethylene glycol 4,000				†	†
, ,	5% w/v 1-Ethyl-3-methylimidazolium chloride, 15% w/v Polyethylene glycol 20,000				1	1
37. (D1)	5% w/v 1-Hexyl-3-methylimidazolium chloride, 30% v/v Polyethylene glycol 400				1	1
38. (D2)	5% w/v 1-Hexyl-3-methylimidazolium chloride, 25% w/v Polyethylene glycol 1,000				1	+
39. (D3)	5% w/v 1-Hexyl-3-methylimidazolium chloride, 20% w/v Polyethylene glycol 4,000				1	†
40. (D4)	5% w/v 1-Hexyl-3-methylimidazolium chloride, 15% w/v Polyethylene glycol 20,000				1	+
41. (D5)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide, 30% v/v Polyethylene glycol 400				1	+
12. (D6)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide, 25% w/v Polyethylene glycol 1,000				1	+
43. (D7)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide, 20% w/v Polyethylene glycol 4,000				1	+
44. (D8)	5% w/v 1-Butyl-3-methylimidazolium dicyanamide, 15% w/v Polyethylene glycol 20,000				+	+
45. (D9)	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate, 30% v/v Polyethylene glycol 400				1	+
. ,	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate, 25% w/v Polyethylene glycol 1,00)			1	1
	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate, 20% w/v Polyethylene glycol 4,00				1	1
	5% w/v 1,3-Dimethylimidazolium dimethyl phosphate, 15% w/v Polyethylene glycol 20,0				1	1
- (- · - /	, significantly product to the significant gryoth Logo					

34 Journey Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611 e-mail: teeh@hrmail.com Website: www.hamptonresearch.com

© 1991 - 2020 Hampton Research Corp. all rights reserved Primed in the United States of America. This guide or parts thereof may not be reproduced in any form without the written permission of the publishers.

Sample:	Sample Concentration:
Sample Buffer:	Date:
Reservoir Volume:	Temperature:
Drop Volume: Total μ l Sample μ l	Reservoir µl Additive µl

1 Clear Drop

2 Phase Separation

3 Regular Granular Precipitate 4 Birefringent Precipitate or

6 Needles (1D Growth)

7 Plates (2D Growth)

5 Posettes or Spherulites

8 Single Crystals (3D Growth < 0.2 mm) 9 Single Crystals (3D Growth > 0.2 mm)

ume: Total μl Sample μl Reservoir μl Additive μl Microcryst	1		rystals (3D Grow	
PEG/Ionic Liquid HT™ - HR2-462 Scoring Sheet	Date:	Date:	Date:	Date:
49. (E1) 5% w/v 1,3-Dimethylimidazolium methyl sulfate, 30% v/v Polyethylene glycol 400				
50. (E2) 5% w/v 1,3-Dimethylimidazolium methyl sulfate, 25% w/v Polyethylene glycol 1,000				
51. (E3) 5% w/v 1,3-Dimethylimidazolium methyl sulfate, 20% w/v Polyethylene glycol 4,000				
52. (E4) 5% w/v 1,3-Dimethylimidazolium methyl sulfate, 15% w/v Polyethylene glycol 20,000				
53. (E5) 5% w/v 1-Butyl-3-methylimidazolium methyl sulfate, 30% v/v Polyethylene glycol 400				
54. (E6) 5% w/v 1-Butyl-3-methylimidazolium methyl sulfate, 25% w/v Polyethylene glycol 1,000				
55. (E7) 5% w/v 1-Butyl-3-methylimidazolium methyl sulfate, 20% w/v Polyethylene glycol 4,000				
56. (E8) 5% w/v 1-Butyl-3-methylimidazolium methyl sulfate, 15% w/v Polyethylene glycol 20,000				
57. (E9) 5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate, 30% v/v Polyethylene glycol 400				
58. (E10) 5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate, 25% w/v Polyethylene glycol 1,000				
59. (E11) 5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate, 20% w/v Polyethylene glycol 4,000				
60. (E12) 5% w/v 1-n-Butyl-3-methylimidazolium n-octylsulfate, 15% w/v Polyethylene glycol 20,000				
61. (F1) 5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate, 30% v/v Polyethylene glycol 400				
62. (F2) 5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate, 25% w/v Polyethylene glycol 1,000				İ
63. (F3) 5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate, 20% w/v Polyethylene glycol 4,000				1
64. (F4) 5% w/v 1-Ethyl-3-methylimidazolium ethyl sulfate, 15% w/v Polyethylene glycol 20,000				
65. (F5) 5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate, 30% v/v Polyethylene glycol 400				
66. (F6) 5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate, 25% w/v Polyethylene glycol 1,000				1
67. (F7) 5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate, 20% w/v Polyethylene glycol 4,000				1
68. (F8) 5% w/v 1-Ethyl-3-methylimidazolium tetrafluoroborate, 15% w/v Polyethylene glycol 20,000				+
69. (F9) 5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate, 30% v/v Polyethylene glycol 400				1
70. (F10) 5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate, 25% w/v Polyethylene glycol 1,000				+
71. (F11) 5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate, 20% w/v Polyethylene glycol 4,000				+
72. (F12) 5% w/v 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate, 15% w/v Polyethylene glycol 20,000				+
73. (G1) 5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate, 30% v/v Polyethylene glycol 400				+
74. (G2) 5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate, 25% w/v Polyethylene glycol 1,000		_		+
75. (G3) 5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate, 20% w/v Polyethylene glycol 4,000		+		+
76. (G4) 5% w/v 1-Butyl-3-methylimidazolium tetrafluoroborate, 25% w/v 1 olyethylene glycol 20,000				+
77. (G5) 5% w/v 1-Butyl-3-methylimidazolium teitanuorobotate, 13% w/v 1 olyethylene glycol 20,000				+
				+
				+
79. (G7) 5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate, 20% w/v Polyethylene glycol 4,000		_		+
80. (G8) 5% w/v 1-Butyl-3-methylimidazolium trifluoroacetate, 15% w/v Polyethylene glycol 20,000				+
81. (G9) 5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, 30% v/v Polyethylene glycol 400				+
82. (G10) 5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, 25% w/v Polyethylene glycol 1,000		_		+
33. (G11) 5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, 20% w/v Polyethylene glycol 4,000				+
34. (G12) 5% w/v 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, 15% w/v Polyethylene glycol 20,000				+
85. (H1) 5% w/v Tetrabutylphosphonium bromide, 30% v/v Polyethylene glycol 400				+
86. (H2) 5% w/v Tetrabutylphosphonium bromide, 25% w/v Polyethylene glycol 1,000			_	
87. (H3) 5% w/v Tetrabutylphosphonium bromide, 20% w/v Polyethylene glycol 4,000				
88. (H4) 5% w/v Tetrabutylphosphonium bromide, 15% w/v Polyethylene glycol 20,000				
89. (H5) 5% w/v Triisobutylmethylphosphonium tosylate, 30% v/v Polyethylene glycol 400				+
90. (H6) 5% w/v Triisobutylmethylphosphonium tosylate, 25% w/v Polyethylene glycol 1,000				
91. (H7) 5% w/v Triisobutylmethylphosphonium tosylate, 20% w/v Polyethylene glycol 4,000				
92. (H8) 5% w/v Triisobutylmethylphosphonium tosylate, 15% w/v Polyethylene glycol 20,000				
93. (H9) 5% w/v 1-Butylpyridinium chloride, 30% v/v Polyethylene glycol 400				
94. (H10) 5% w/v 1-Butylpyridinium chloride, 25% w/v Polyethylene glycol 1,000				
95. (H11) 5% w/v 1-Butylpyridinium chloride, 20% w/v Polyethylene glycol 4,000				
96. (H12) 5% w/v 1-Butylpyridinium chloride, 15% w/v Polyethylene glycol 20,000				

34 Journey Aliso Viejo, CA 92656-3317 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611 e-mail: tech@hrmail.com Website: www.hamptonresearch.com