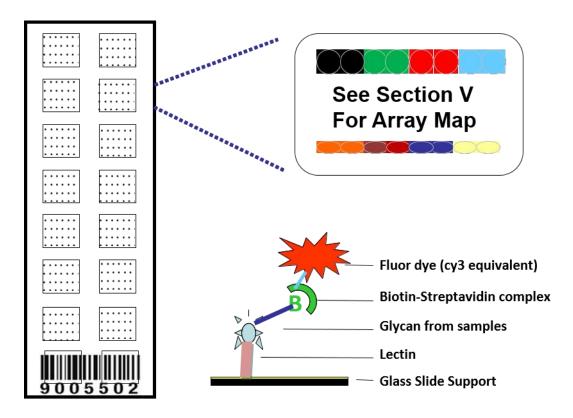
RayBiotech Lectin Array 70

--Detect glycan profiles using 70 lectins

User Manual (Version 3) October 4, 2021


Cat # GA-Lectin-70

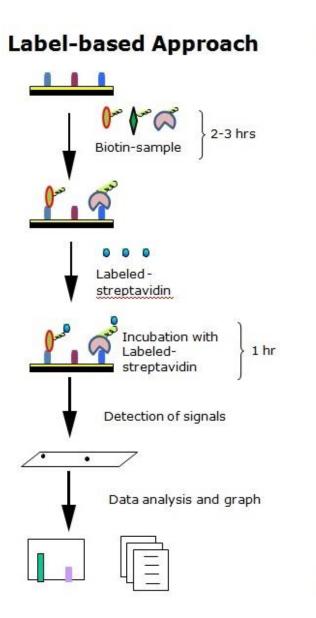
We Provide You With Excellent Protein Array Systems and Service

Tel:(Toll Free) 1-888-494-8555 or 770-729-2992; Fax: 770-206-2393; Website:<u>www.RayBiotech.com</u> Email: <u>info@RayBiotech.com</u>

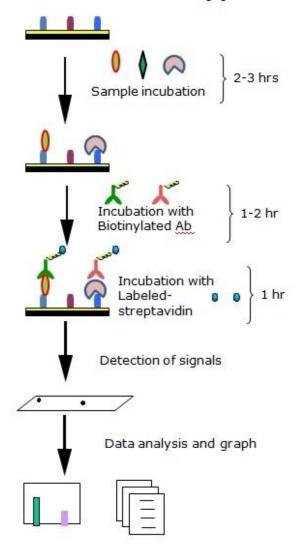
Lectins printed on slides (70)	AAA, AAL, ACG, ACL, ASA, BanLec, BC2L-A, BC2LCN, BPA, Calsepa, CGL2, CNL, Con A, DBA, Discoidin I, Discoidin II, DSA, ECA, EEL, F17AG, Gal1, Gal1-S, Gal2, Gal3, Gal3C-S, Gal7-S, Gal9, GNA, GRFT, GS-I, GS-II, HHA, Jacalin, LBA, LCA, LEA, Lentil, Lotus, LSL-N, MAA, Malectin, MOA, MPL, NPA, Orysata, PA-IIL, PA-IL, PALa, PHA-E, PHA-L, PHA-P, PNA, PPL, PSA, PSL1a, PTL, RS-Fuc, SAMB, SBA, SJA, SNA-I, SNA-II, STL, UDA, UEA-I, UEA-II, VFA, VVA, WFA, WGA
Format	One standard glass slide is spotted with 14 wells of identical lectin sub-arrays. Each lectin is printed in duplicate on every sub-array
Detection Method	Fluorescence with laser scanner: Cy3 equivalent dye
Sample Volume	50 – 100 μl per array
Reproducibility	CV <20%
Assay duration	6 hrs

TABLE OF CONTENTS

١.	Overview	1
	Introduction	3
	How It Works	4
II.	Materials Provided	5
III.	General Considerations	6
	A. Label-Based vs. Sandwich-Based Method	6
	B. Preparation of Samples	6
	C. Handling Glass Slides	7
	D. Incubation	7
IV.	Protocol	8
	A. Dialysis of Sample	8
	B. Biotin-labeling Sample	9
	C. Dry the Glass Slide	10
	D. Blocking and Incubation	10
	E. Incubation with Cy3 Equivalent Dye-Streptavidin	11
	F. Fluorescence Detection	12
	G. Data Analysis	13
	H. Normalization of Array Data	
V.	Lectin Array 70 Map	
VI.	Lectin Array 70 Key	14
VII.	Application 1- Detection of Glycans on HRP	16
VIII.	Application 2- Profile of Serum Sample	17
IX.	Other Applications	18
Х.	Troubleshooting Guide	


I. Introduction

Glycocalyx, literally meaning 'sugar coat', is an extracellular polymeric coating surrounding many prokaryotic and eukaryotic cells consisting of glycoproteins, glycolipids, proteoglycans and glycosaminoglycans. The constituents of the glycocalyx play an important role in the process of cell signaling, virus transfection, and immunity. However, detection tools for the research of glycobiology are currently in very limited supply.


RayBiotech, pioneered the development of antibody arrays, which are now widely applied in the research community with hundreds of peer reviewed publications such as in Cell and Nature. Taking advantage of advancements in microarray technology developed for antibody arrays, we recently developed glycan arrays to help researchers: 1) identify and profile the glycans in their samples; 2) determine whether their biomarker of interest has glycan moieties, and; 3) find specific glycan binding ligands in biological samples.

Lectins are glycan-binding proteins which have been purified from trees, beans and some fruits. They are highly specific for a given glycan based on their sequence and the different sugar unit structures the glycan contains. For the RayBiotech lectin array, one standard glass slide is spotted with 14 identical lectin arrays, 1 in each well. Each lectin, together with the positive controls is arrayed in duplicate. The slide comes with a 16-well removable gasket which allows for the processing of 14 samples using one slide. Four slides can be nested into a tray, which matches a standard microplate and allows for automated robotic high-throughput processing of 56 arrays simultaneously. The RayBiotech lectin array provides a powerful new tool for glycosylation determination, drug discovery and biomarker development; all with limited sample volumes required.

How It Works

Sandwich-based Approach

II. Materials Provided

Upon receipt, all components of the RayBiotech Lectin Array 70 kit should be stored at -20°C. After initial use, remaining reagents should be stored at 4°C to avoid repeated freeze-thaw cycles and may be stored for up to 3 months (Labeling Reagent, Item B, should be prepared fresh each time before use). Unused glass slides should be kept at -20 °C and repeated freeze-thaw cycles should be avoided (slides may be stored for up to 6 months). The entire kit should be used within 6 months of purchase.

Components

Item	Description	1-Slide kit	2-Slide kit	4-Slide kit
А	Dialysis Vials and Floating Dialysis Rack	28 vials/2	56 vials/4	112 vials/8
		racks	racks	racks
В	Labeling Reagent	4	8	16
D	Stop Solution	1	2	4
Е	Lectin Array Glass Slide Assembly	1	2	4
F	Sample Diluent	1	1	2
G	20X Wash Buffer I	1	1	2
Н	20X Wash Buffer II	1	1	2
I	Cy3 equivalent dye-conjugated	1	2	4
	Streptavidin			
J	Adhesive device sealer	2	4	8
К	Labeling Buffer	1	2	4
Μ	Slide Washer/Dryer	1	1	2
N	Manual	1	1	1

Additional Materials Required

- Detection antibodies of interest (For sandwich-based method only)
- Orbital shaker
- Laser scanner for fluorescence detection
- Aluminum foil
- 1.5ml Polypropylene microcentrifuge tubes
- KCl, NaCl, KH₂PO₄ and Na₂HPO₄ (For label-based method only)
- Plastic or glass containers, beaker, stir plate and stir bar
- Pipettors, pipette tips, ddH₂O and other common lab consumables

III. General Considerations

A. Label-Based vs. Sandwich-Based Method

The RayBiotech Lectin Array 70 Kit can be used with either a label-based method or as a sandwich-based method.

- The label-based method is used to biotinylate samples containing proteoglycans and glycoproteins for direct detection on the array via a Cy3 equivalent dye-conjugated Biotin-Streptavidin complex. A complete protocol and the primary materials for this procedure are included with the kit.
- The sandwich-based method is used for antibody detection of glycocalyx elements (glycolipids, glycoproteins, etc.) captured on the array. The user will need to supply the labeled reporter antibodies specific for the glycocalyx elements of interest. An example protocol for this procedure with a general "Antibody Cocktail" is included in this manual. Specific antibody concentrations and conditions will need to be determined by the end user.

B. Preparation of Samples

- Use serum-free conditioned media if possible.
- If serum-containing conditioned media is required, it is highly recommended that complete medium be used as a control since many types of sera contain glycocalyx elements.
- We recommend the following parameters for your samples:
 - $\circ~50$ to 200 μl of original or diluted serum, plasma, cell culture media, or other body fluid, or 50~100 μl of cell or tissue lysates with 1~2 mg/ml total protein concentration.

Note: If you experience high background or the readings exceed the detection range, further dilution of your sample is recommended.

C. Handling Glass Slides

- Do not touch the surface of the slides, as the microarray slides are very sensitive. Hold the slides by the edges only.
- Handle all buffers and slides with latex-free gloves.
- Handle the glass slide in a clean environment.
- Permanent marker ink can significantly interfere with fluorescent signal detection. Never mark anywhere on the front (arrayed) side of the slide. It's best to avoid using marker completely, however if you need to number the slide, please add a small mark only on the back of the slide along the top or bottom edge using a green or blue ultra-fine point Sharpie[®] brand marker, only after the slide is completely dry.

D. Incubation

- A. Completely cover array area with sample or buffer during incubation.
- B. Avoid foaming during incubation steps.
- C. Perform all incubation and wash steps under gentle rotation.
- D. Cover the incubation chamber with the adhesive film during incubation to prevent evaporation, particularly when incubation is more than 2 hours or <70 μ l of sample or reagent is used.
- E. Several incubation steps such as step 6 (blocking), step 7 (sample incubation), step 10 (detection antibody incubation), or step 13 (Cy3 equivalent dye-streptavidin incubation) may be done overnight at 4°C. Please make sure to cover the incubation chamber tightly to prevent evaporation.

IV. Protocol

READ ENTIRE PROTOCOL BEFORE STARTING

A. Dialysis of Sample

- Note: For the Sandwich-based protocol start at **C. Drying the Glass Slide,** step 8, on page 10. Do <u>not</u> do steps 1-7.
- Note: Samples must be dialyzed prior to biotin-labeling (Steps 5–7).
 - Prepare enough dialysis buffer (1X PBS, pH=8.0) for all dialysis steps herein and after. To prepare 1 L dialysis buffer, dissolve 0.2 g KCl, 8 g NaCl, 0.2 g KH₂PO₄ and 1.15 g Na₂HPO₄ in 800 ml ddH₂O. Adjust pH=8.0 with 1M NaOH and adjust final volume to 1000 ml with ddH₂O.
 - 2. Add each sample into a separate Dialysis Vial (Item A). Load 200 μ l cell culture supernatant or 100 μ l cell lysate or tissue lysate (1~2 mg/ml total protein) or 20 μ l serum or plasma + 80 μ l 1X PBS, pH=8 (5-fold dilution). Carefully place Dialysis Vials into Floating Dialysis Rack.
- Note: If the samples appear to be cloudy, transfer the samples to a clean tube, centrifuge at 13,000 rpm for 20 minutes at 2-8°C. If the samples are still not clear, store them at -20°C for 20 minutes. Remove from the freezer, immediately centrifuge at 13,000 rpm for 20 minutes at 2-8°C.
 - 3. Place Floating Dialysis Rack into at least 500 ml dialysis buffer in a large beaker. For more than 2 samples, make certain to use at least 300 ml dialysis buffer for each sample (more buffer will improve the efficiency of dialysis). Place beaker on a stir plate and dialyze for at least 3 hours at 4°C, stirring buffer gently. Then exchange the dialysis buffer and repeat dialysis for another 3 hours at 4°C. Transfer dialyzed sample to a clean eppendorf tube. Spin dialyzed samples for 5 min at 10,000 rpm to remove any particulates or precipitants, and then transfer the supernatants to a clean tube.

Note: The sample volume may change during dialysis.

Note: Dialysis procedure may proceed overnight.

Note: Determine the total protein concentration for cell culture supernatants or cell/tissue lysate after dialysis procedure (Step 3). We recommended using a BCA total protein assay (eg, Pierce, Catalog # 23227).

B. Biotin Labeling of Sample

- Note: Amines (e.g., Tris, glycine) and azides quench the biotinylation reaction. Avoid contaminating samples with these chemicals prior to biotinylation.
 - 4. Immediately before use, prepare 1X Labeling Reagent. Briefly spin down the Labeling Reagent tube (Item B). Add 100 μ l 1X PBS into the tube, pipette up and down or vortex slightly to dissolve the lyophilized reagent.
 - 5. Add 1X Labeling Reagent to dialyzed samples.
 - a. For labeling cell culture supernatants: transfer 180 μ l dialyzed sample into a new tube. Add 36 μ l of 1X Labeling Reagent Solution per 1 mg total protein in dialyzed cell culture supernatant. Mix well. For example, if sample's total protein concentration is 0.5 mg/ml you need to add 3.24 μ l 1X Labeling Reagent to the tube of 180 μ l dialyzed sample.
 - b. For labeling serum or plasma: Add 22 μ l of 1X Labeling Reagent Solution into a new tube containing 35 μ l dialyzed serum or plasma sample and 155 μ l Labeling Buffer (Item K).
 - c. For labeling cell or tissue lysates: transfer 30 μg (for example, 15 μl of 2 mg/ml) cell or tissue lysates into a tube and add Labeling Buffer (Item K) for a total volume of 300 μl. Then add 3.3 μl of 1X Labeling Reagent Solution.

Note: To normalize serum/plasma or cell/tissue lysate concentrations during biotinylation, measure sample volume before and after dialysis. Then adjust the volumes of dialyzed serum/plasma or cell/tissue lysates and Labeling Buffer to compensate.

- 6. Incubate the reaction solution at room temperature with gentle rocking or shaking for 30 min. Mix the reaction solution by gently tapping the tube every 5 min.
- 7. Add 3 μ l Stop Solution (Item D) into each reaction tube and immediately dialyze as directed in Step 3.
- Note: Biotinylated samples can be stored at -20°C or -80°C until you are ready to proceed with the assay.

C. Dry the Glass Slide

- 8. Take out the bag containing the glass slide from the box, and let the slide equilibrate to room temperature inside the sealed plastic bag for 20-30 minutes. Then, remove slide from the plastic bag; peel off the cover film, and let it air dry at room temperature for another 1-2 hours.
- Note: Incomplete drying of slides before use may cause the formation of "comet tails".

D. Blocking and Incubation

- 9. Add 100µl Sample Diluent (Item F) into each well and incubate at room temperature for 30 min to block slides.
- 10. Immediately prior to sample incubation, spin biotin-labeled samples for 5 minutes at 10,000 rpm to remove any particulates or precipitates. Dilute samples with Sample Diluent. Recommended dilution of the biotin-labeled samples is 2-10 fold for cell culture supernatants, 20-100 fold for serum/plasma and 30-100 fold cell/tissue lysate, however, optimization is recommended to do for the best results.
- 11. Decant buffer from each well. Add 100µl of sample to each well. Incubate arrays at room temperature for 1-2 hours. (Longer incubation time is preferable if higher signal intensity is desired)
- Note: We recommend using 50 to 100 μ l of original or diluted serum, plasma, conditioned media, or other body fluid, or 50-500 μ g/ml of protein for cell

and tissue lysates. Cover the incubation chamber with adhesive film during incubation if less than 70 ul of sample or reagent is used.

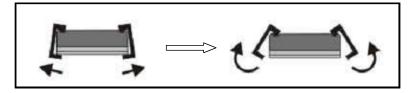
Note: This step may be done overnight at 4^oC for highest intensities.

Note: For the Sandwich-based protocol, it's recommended to do optimization to determine appropriate dilution of non-biotinylated samples for incubation.

- 12. Wash:
 - a. Calculate the amounts of 1x Wash Buffers I & II that are needed for each step of the protocol. Separately dilute required amounts of 20x Wash Buffer I and 20x Wash Buffer II with ddH₂O to 1x concentration. For example if 12 ml of 1x Wash Buffer I is needed then 600 μl of 20x Wash Buffer I would be diluted to a final volume of 12 ml.
 - b. Decant the samples from each well, and wash each well 5 times (5 min each) with 150 μ l of 1x Wash Buffer I at room temperature with gentle shaking. Completely remove wash buffer between each wash step.
 - c. (*Optional for Cell and Tissue Lysates*) Put the glass slide with frame into a box with 1x Wash Buffer I (cover the whole glass slide and frame with Wash Buffer I), and wash at room temperature with gentle shaking for 20 min.
 - d. Decant the 1x Wash Buffer I from each well, wash 2 times (5 min each) with 150 μ I of 1x Wash Buffer II at room temperature with gentle shaking. Completely remove wash buffer between each wash step.

Note: Incomplete removal of the wash buffer after each wash step may cause "dark spots". (Background signal is higher than that of the spot.)

E. Incubation with Cy3 Equivalent Dye-Streptavidin


Note: For the Sandwich-based protocol, follow below steps after

secondary antibody incubation if biotinylated secondary antibody is used. If fluorescence conjugated secondary antibody is used, skip steps 13-15 and continue from step 16 after incubation of secondary antibody. Appropriate dilution of secondary antibody should be determined before incubation.

- 13. Briefly spin down the Cy3 equivalent dye-conjugated streptavidin tube.
- 14. Add 1.4 ml of Sample Diluent to Cy3 equivalent dye-conjugated streptavidin tube. Mix gently.
- 15. Add 80 μl of Cy3 equivalent dye-conjugated streptavidin to each well. Cover the slide with aluminum foil to avoid exposure to light or incubate in dark room. Incubate at room temperature for 1 hour.
- 16. Decant the samples from each well, and wash 5 times with 150 μ l of 1x Wash Buffer I at room temperature with gentle shaking. Completely remove wash buffer after each wash step.

F. Fluorescence Detection

- 17. Disassemble the slide assembly by pushing clips outward from the slide side. Carefully remove the slide from the gasket.
- Note: Be careful not to touch the surface of the array.

- 18. Place the slide in the slide Washer/Dryer (a 4-slide holder/centrifuge tube), add enough 1x Wash Buffer I (about 30 ml) to cover the whole slide, and then gently shake at room temperature for 15 minutes. Decant Wash Buffer I. Wash with 1x Wash Buffer II (about 30 ml) with gentle shaking at room temperature for 5 minutes.
- 19. Remove liquid droplets completely by one of the following ways:

- i. Put the glass slide into the Slide Washer/Dryer, and dry the glass slide by centrifuging at 1,000 rpm for 3 minutes without cap.
- ii. Or, dry the glass slide by a compressed N_2 stream.
- iii. Or gently apply suction with a pipette to remove water droplets.Do not touch the sub-array areas, only the sides of the slide.
- 20. Imaging: The signals can be visualized through use of a laser scanner equipped with a Cy3 wavelength such as Axon GenePix. Make sure that the signal from the spot containing the highest concentration receives the highest possible reading, yet remains unsaturated.

Note: If the signal intensity for different lectins vary greatly in the same array, we recommend using multiple scans, with a higher PMT for low signal lectins, and a low PMT for high signal lectins.

G. Data Analysis

21. Data extraction can be done using the GAL file that is specific for this array, along with the microarray software commonly available in most microarray laser scanners (GenePix, ScanArray Express, etc.). GAL files can be found on our website here.

www.RayBiotech.com/Gal-Files.html.

H. Normalization of Array Data

22. To normalize signal intensity data, one sub-array is defined as "reference" to which the other arrays are normalized. This choice can be arbitrary. For example, in our Analysis Tool Software, the array represented by data entered in the left-most column each worksheet is the default "reference array."

You can calculate the normalized values as follows:

X(Ny) = X(y) * P1/P(y)

Where:

P1 = mean signal intensity of POS spots on reference array

P(y) = mean signal intensity of POS spots on Array "y"

X(y) = mean signal intensity for spot "X" on Array "y"

X(Ny)= normalized signal intensity for spot "X" on Array "y"

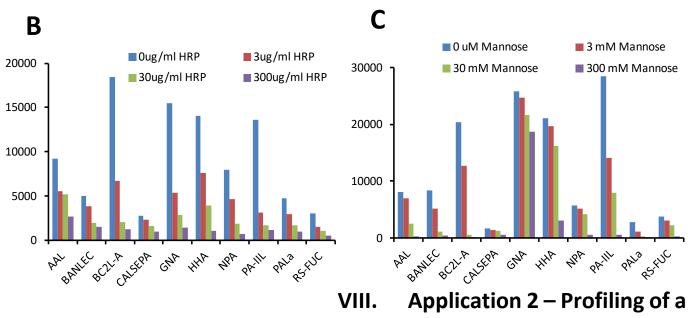
0	0 0 0	А	В	с	D	E	F	G	н	I	J	к	L	
e	1	POS1		POS2		NEG		NEG		AAA		AAL		
duplicate	2	ACG		ACL		ASA		BanLec		BC2L-A		BC2	BC2LCN	
ldn	3	BPA		Calsepa		CGL2		CNL		Con A		DE	BA	
-	4	Disc	oidin I	Disco	idin II	DS	A	E	CA	E	EL	F17	AG	
T =	5	Gal1		Gal1-S		Gal2		Gal3		Gal3C-S		Gal7-S		
otte zona	6	Gal9		GNA		GRFT		GS-I		GS-II		HHA		
is spotted horizona	7	Jacalin		LBA		LcH LEA		EA	Le	ntil	Lot	tus		
	8	LSL-N		MAA		Male	ctin	М	OA	М	PL	Nf	PA	
ctir	9	Ory	/sata	PA	-IIL	PA	-IL	P/	La	PH	A-E	PH	A-L	
e l	10	PH	IA-P	PI	A	PP	۲L	P	SA	PS	L1a	P	٢L	
Each lectin	11	RS	RS-Fuc		MB	SBA		S	JA	SN	A-I	SN	A-11	
ш	12	S	TL	U	DA	UE/	A-I	UE	A-II	V	FA	٧١	/A	
	13	W	/FA	W	GA	NE	G	N	EG	PC	52	PO	S1	

V. Lectin Array 70 Map

VI. Lectin Array 70 Key

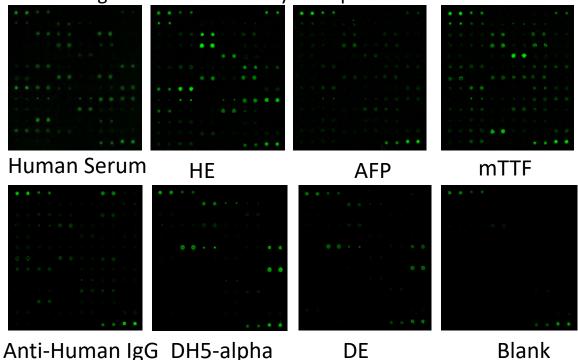
Lectins	Abbreviation	Source	Carbonhydrate specificity
1 Anguilla anguilla	AAA	Anguilla anguilla (Fresh Water Eel)	αFuc
2 Aleuria aurantia	AAL	Aleuria aurantia mushrooms	Fuca6GlcNAc
3 Agrocybe cylindracea lectin	ACG	E. coli expressed Agrocybe cylindracea galectin	α2-3 Sialic Acid
4 Amaranthus caudatus	ACL, ACA	Amaranthus caudatus seeds	Galβ3GalNAc
5 Allium sativum	ASA	Allium sativum agglutinin (Garlic)	αMan
			Mannose, Glucose, branched high-mannose
6 Musa acuminata lectin	BanLec	E. coli expressed Musa acuminata	containing α 1,3-glycoside bond
7 Burkholderia cenocepacia lectin	BC2L-A	E. coli expressed Burkholderia cenocepacia	High-mannose
8 Burkholderia cenocepacia lectin	BC2LCN(AiLecS1)	E. coli expressed Burkholderia cenocepacia	Fucα1-2Galβ1-3GalNAc (H type 3), Fucα1-2Galβ1- 3GlcNAc (H type 1)
9 Bauhinia purpurea	BPA, BLP	Bauhinia purpurea alba (Camel's Foot Tree)	Galβ3GalNAc
10 Calystegia sepium lectin	Calsepa	E. coli expressed Calystegia sepium	High-mannose
11 Coprinopsis cinerea lectin	CGL2	E. coli expressed Coprinopsis cinerea	βGal, GalNAcα1-3Gal (Blood Group A), Galα1- 3Gal (Blood Group B)
12 Clitocybe nebularis lectin	CNL	E. coli expressed <i>Clitocybe nebularis</i>	α/βGalNAc, GalNAcβ1-4GlcNAc, GalNAcα1-3[Fucα1-2]Galβ1-4GlcNAc (Blood Group A)
13 Coanavalin A	Con A	Coanavalia ensformis (Jack Beans) seeds	αMan, αGlc
14 Dolichos biflorus	DBA	Dolichos biflorus (Horse Gram) seeds	αGalNAc
15 Dictyostelium discoideum lectin	Discoidin I	E. coli expressed Dictyostelium discoideum	αGalNAc (Tn antigen), LacNAc
16 Dictyostelium discoideum lectin	Discoidin II	E. coli expressed Dictyostelium discoideum	Gal, LacNAc, Asialoglycans, Gal/GalNAcβ1- 4GlcNAcβ1-6Gal/GalNAc
17 Datura stramonium	DSA, DSL	seeds	(GlcNAc) ₂₋₄
18 Erythrina cristagalli	ECA, ECL	Erythrina cristagalli (Coral Tree) seeds	Galβ4GlcNAc
19 Eunonymus europaeus	EEL	Eunonymus europaeus (Spindle Tree) seeds	Galα3Gal
20 E. coli lectin	F17AG	E. coli expressed E. coli	GIcNAc
21 Human galectin1 lectin (stable form)	Gal1	E. coli expressed human galectin1 (stable form)	branched LacNAc, Gal 14

RayBiotech Lectin Array 70 Kit


Lectins	Abbreviation	Source	Carbonhydrate specificity
22 Human galectin1-S lectin	Gal1-S	E. coli expressed human galectin1-S	branched LacNAc
			GalNAcα1-3Gal (Blood Group A), branched
23 Human galectin2 lectin	Gal2	E. coli expressed human galectin2	LacNAc
24 Human galectin3 lectin (full-length)	Gal3	E. coli expressed Human galectin3(full-length)	poly LacNAc
25 Human galectin 3C-S lectin	Gal3C-S	E. coli expressed Human galectin 3C-S	poly LacNAc
26 Human galectin7-S lectin	Gal7-S	E. coli expressed Human galectin7-S	Galβ1-3GlcNAc
27 Human galectin9 lectin (Stable Form)	Gal9	E. coli expressed human galectin9	poly LacNAc, GalNAc α 1-3Gal (Blood Group A)
28 Galanthus nivalis	GNA, GNL	Galanthus nivalis (Snowdrop) bulbs	αMan
29 Griffithia sp. Lectin	GRFT	E. coli expressed Griffithia sp.	High-mannose
30 Griffonia (Banderaea) simplicifolia I	GS-I, GSL-II, BSL-I	Griffonia (Banderaea) simplicifolia seeds	αGal, α3GalNAc
31 Griffonia (Brandeiraea)	GS-II, GSL-II, BSL-II	Griffonia (Banderaea) simplicifolia seeds	α or βGlcNAc
32 Hippeastrum hybrid	HHA, HHL, AL	Hippeastrum hybrid (Amaryllis) bulbs	αMan
33 Jacalin	Jacalin, AlL	Artocarpus integrifolia (Jackfruit) seeds	Galβ3GalNAc
34 Phaseolus lunatus	LBA	Phaseolus lunatus (Lima Bean) seeds	GalNAca(1,3)[aFuc(1,2]Gal
35 Lens Culinaris	LcH, LCA	Lens culinaris (lenti I) seeds	αMan, αGlc
36 Lycopersicon esculentum	LEA, LEL, TL	Lycopersicon esculentum (tomato) fruit	(GlcNAc) ₂₋₄
37 Lentil lectin	Lentil	Lens culinaris seeds	D-Mannose, D-glucose
		Lotus tetragonolobus, Tetragonolobus	
38 Lotus tetragonolobus	Lotus, LTL	purprea(Winged Pea, Asparagus Pea) seeds	αFuc
39 Laetiporus sulphureus lectin	LSL-N	E. coli expressed Laetiporus sulphureus	LacNAc, poly LacNAc
40 Maackia amurensis I	Maa, Mal, Mal-I	Maackia amurensis seeds	Galβ4GlcNAc
41 Human malectin lectin	Malectin	E. coli expressed human malectin	Glc ₂ -N-biose
42 Marasmius oreades lectin	MOA	E. coli expressed Marasmius oreades	Galα1-3[Fucα1-2]Galβ1-4GlcNAc (Blood Group B) Galα1-3Galβ1-4GlcNAc, Galα1-3Gal
43 Maclura pomifera	MPL, MPA	Maclura pomifera (Osage Orange) seeds	Galβ3GalNAc
44 Narcissus pseudonarcissus	NPA, NPL, DL	Narcissus pseudonarcissus (Daffodil) bulbs	αMan
45 Oryza sative lectin	Orysata	E. coli expressed Oryza sative	High-mannose
			Fucose, Fucose containing oligosaccharides,
46 Pseudomonas aeruginosa lectin	PA-IIL	E. coli expressed Pseudomonas aeruginosa	Mannose
47 Pseudomonas aeruginosa lectin	PA-IL	E. coli expressed Pseudomonas aeruginosa	Galα1-3(4)Gal
48 Phlebodium aureum lectin	PALa	E. coli expressed Phlebodium aureum	High-mannose
49 Phaseolus vulgaris Erythroagglutinin	PHA-E	Phaseolus vulgaris Erythroagglutinin (Red Kidney Bean) seeds)	Galβ4GlcNAcβ2Manα6(GlcNAcb4) (GlcNAcβ4Manα3)Manβ4
		Phaseolus vulgaris Erythroagglutinin (Red Kidney	
50 Leucoagglutinin	PHA-L	Bean) seeds)	Galβ4GlcNAcβ6(Gl cNAcβ2Manα3)Manα3
51 Phaseolus vulgaris agglutinin	PHA-P	Phaseolus vulgaris Erythroagglutinin (Red Kidney Bean) seeds)	Galβ4GlcNAcβ2Manα6(GlcNAcb4) (GlcNAcβ4Manα3)Manβ4, Galβ4GlcNAcβ6(Gl cNAcβ2Manα3)Manα3
52 Peanut	PNA	Arachis hypogaea Peanut	Galβ3GalNAc
53 Pleurocybella porrigens lectin	PPL	E. coli expressed Pleurocybella porrigens	α/βGaINAc
54 Pisum sativum	PSA, PEA	Pisum sativum (Pea) seeds	αMan, αGlc
55 Polyporus squamosus lectin	PSL1a	E. coli expressed Polyporus squamosus	α2-6 Sialic Acid
56 Psophocarpus	PTL, PTL-I, WBA-I	Psophocarpus tretragonoiobus (Winged Bean)	GalNAc, Gal
57 Ralstonia solanacearum lectin	RS-Fuc	E. coli expressed Ralstonia solanacearum	Fucose
58 Sambucus Sieboldiana Lectin	SAMB	Japanese elderberry	NeuAcα2-6Gal/GalNAc
59 Soybean	SBA	Glycine max (Soybean) seeds	α > βGalNAc
60 Sophora japonica	SJA	Sophora japonica (Japanese Pagoda Tree) seeds	βGalNAc
61 Sambucus nigra l	SNA-I	Sambucus nigra (Elderberry) bark	NANAα(2,6)GalNAc > GalNAc = Lac > GalNANAα(2,6)Gal
62 Sambucus nigra II	SNA-II	Sambucus nigra (Elderberry) bark	GalNAc > Gal
63 Solanum tuberosum	STL, PL	Solanum tuberosum, (potato) tubers	(GlcNAc) ₂₋₄
64 Urtica dioica	UDA	Urtica dioica (Stinging Nettle) seeds	GICNAC
65 Ulex europaeus I	UEA-I	Ulex europaeus (Furze Gorse) seeds	αFuc
66 Ulex europaeus II	UEA-II	Ulex europaeus (Furze Gorse) seeds	Poly β(1,4)Gl cNAc
		Vicia taha (Fava Roan) coode	
67 Vicia faba		Vicia faba (Fava Bean) seeds	αMan GalNAc
67 Vicia faba 68 Vicia villosa 69 Wisteria floribunda	VFA VVA, VVL WFA	Vicia faba (Fava Bean) seeds Vicia villosa (Hairy Vetch) seeds Wisteria floribunda (Japanese Wisteria) seeds	GalNAc GalNAc

Sugar Abbreviations						
Fuc: L-Fucose	Gal: D-Galactose	GalNAc: N-Acetylglactosamine	Glc: D-Glucose			
GlcNAc: N-Acetylglucosamine	Lac: Lactose	Man: Mannose				

VII. Application 1 – Detection of Glycans on a Purified Protein


In this application, the RayBio Lectin Array 70 was used to detect specific glycosylations of purified Horseradish Peroxidase (HRP). Lectins BANLEC, BC2L-A, CALSEPA, GNA, HHA, NPA, PA-IIL, and PALa showed strong signals after incubation with 3.3 ug/mL Biotin-HRP followed by detection with streptavidin-fluorescence-dye (Figures A, B and C). The fluorescence signals from BANLEC, BC2L-A, CALSEPA, GNA, HHA, NPA, PA-IIL, and PALa were blocked in a concentration-dependent manner by HRP itself (Figures A and C), indicating that the signals were generated by lectin-HRP binding. These eight lectins are known to exhibit specific binding to mannose, which indicates that HRP contains mannose. After adding increasing amounts of mannose, the signal from BANLEC, BC2L-A, CALSEPA, GNA, HHA, NPA, PA-IIL, and PALa were reduced (Figures A and B). The reduction in signals from increasing concentrations of mannose confirms that HRP protein contains mannose in its glycocalyx. Additionally, the two lectins AAL and RS-FUC (fucose binding specificity) also showed strong interaction with HRP, which indicates the fucosylation of HRP. Overall, the results of the Lectin Array 70 were consistent with published literature regarding HRP glycosylation.

Serum Sample

Using the lectin array, we can discover the different glycoprotein profiles of the serum samples, cell lysates, or purified glycoprotein. The images below show the profiles of the glycans from different types of samples including human serum, recombinant glycoproteins human HE4, AFP, mouse TTF, purified human IgG, and bacterial cell lysates OF DH-5 α , DE3 detected by Biotin labeling and Fluorescence dye-streptavidin.

IX. Other Applications:

Quantitative analysis of lectin-glycoprotein interactions, Example: a concentration series of glycoproteins detected with the lectin array could reveal concentration dependent effects of lectin-glycan binding;

Determine the profile of bacterial cell-surface glycans; Cell lysate from bacteria can be biotinylated and hybridized to the lectin array. Analysis of the binding pattern and correlation with the known carbohydrate-binding specificities of the lectins can determine the glycans on the cell membrane.

Problem	Cause	Recommendation
	Inadequate detection	Increase laser power and PMT parameters
	Inadequate reagent volumes or improper dilution	Check pipettes and ensure correct preparation
Weak Signal	Short incubation time	Ensure sufficient incubation time or change sample incubation step to overnight
	Too low glycan concentration in sample	Reduce amount of dilution or concentrate sample
	Improper storage of kit	Store kit as suggested temperature; Don't freeze/thaw the slide
	Bubble formed during incubation	Handle and pipette solutions more gently; De-gas solutions prior to use
Uneven Signal	Arrays are not completed covered by reagent	Prepare more reagent and completely cover arrays with solution
	Reagent evaporation	Cover the incubation chamber with adhesive film during incubation
	Cross-contamination from neighboring wells	Avoid overflowing wash buffer
General	Comet tail formation	Air dry the slide for at least 1 hour before usage
General	Inadequate detection	Increase laser power that the highest concentration for each lectin receives the highest possible reading
		yet remains unsaturated
	Overexposure	Lower the laser power
High	Dark spots	Completely remove wash buffer in each wash step
High Background	Insufficient wash	Increase wash time and use more wash buffer
Background	Dust	Minimize dust in work environment before starting experiment

X. Troubleshooting Guide

Slide is allowed to dry out	Take additional precautions to prevent slides from
	dying out during experiment

Note:

This product is intended for research only and is not to be used for clinical diagnosis. Our products may not be resold, modified for resale, or used to manufacture commercial products without written approval by RayBiotech, Inc.

Under no circumstances shall RayBiotech be liable for any damages arising out of the use of the materials.

Products are guaranteed for six months from the date of purchase when handled and stored properly. In the event of any defect in quality or merchantability, RayBiotech's liability to buyer for any claim relating to products shall be limited to replacement or refund of the purchase price.

This product is for research use only.

©2010 RayBiotech, Inc.