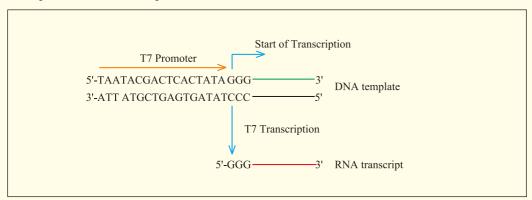


T7 High Efficiency Transcription Kit

Cat. No. JT101

Storage: at -20°C for one year

Description


T7 High Efficiency Transcription Kit is designed for in vitro RNA synthesis by T7 RNA Polymerase with supercoiled or linearized DNA templates. More than $50 \mu g$ of RNA can be produced from a $20 \mu l$ reaction with $1 \mu g$ of template added. Synthesized RNA can be used for *in vitro* translation, RNase protection assays, RNA splicing, and hybridization assays.

Kit Contents

Kit Contents		
JT101-01 (25 rxns)		
50 μ1		
100 μ1		
200 μ1		
25 μ1		
25 μ1		
500 μ1		
10 μ1		

RNA Synthesis

Principle of In Vitro Transcription

Template Preparation

• Supercoiled plasmid DNA

Supercoiled plasmid DNA should contain a T7 promoter and an effective terminator. Termination efficiency varies with teminators. The following sequence has strong termination efficiency.

	Transcription template	
T7 Promoter		 Terminator

T7 Promoter: 5'-TAATACGACTCACTATAGGG#-3' #: G/A

· Linearized DNA

Linearized plasmid DNA or PCR product, with T7 promoter and terminal sequences, can be used as template for *in vitro* transcription. We suggest to use 5'-overhang or blunt end restriction enzymes to generate the linearized templates, and avoid to use 3'-overhang restriction enzymes to generate the template. Digested linearized DNA should be purified.

Transcription

• Add following components

Component	Volume
Template	1 μg
5×T7 Transcription Reaction Buffer	4 μ1
10 mM NTP Mix	8 μ1
T7 Transcription Enzyme Mix	2 μ1
RNase-free Water	to 20 µl

- Mix thoroughly and incubate at 37°C for 2 hours.
- Add 1 µl DNase I, incubate at 37°C for 15 minutes. Then add 1 µl of 500 mM EDTA (pH 8.0) to terminate reaction (immediately proceed to the following purification step after termination).

Purification of Synthesized RNA

Please refer to EasyPure® RNA Purification Kit

Quantification and Analysis of synthesized RNA

- RNA concentration can be determined by ultraviolet light spectrophotometer.
- Transcripts of 100-1000 nt can be run on denaturing gel (6% acrylamide, 7 M urea). Use 1×TBE Buffer as the running buffer. (10×TBE Buffer: 0.9 M Tris Base, 0.9 M Boric Acid, 20 mM EDTA.)
- Transcripts of 500-5000 nt can also be run on 1% formaldehyde denaturing gel. Use 1×MOPS Buffer as the running buffer. (10×MOPS Buffer: 0.4 M MOPS (pH 7.0), 0.1 M Sodium Acetate, 10 mM EDTA.)
- For electrophoresis analysis, dilute 0.2-1 μ g RNA with RNase-free water to make the total volume to 5 μ l, add 5 μ l of 2×RNA Loading Buffer and mix thoroughly, incubate at 70°C for 10 minutes and followed by incubation on ice for 2 minutes, then load samples on the gel. After electrophoresis, stain the gel.

Notes

- Avoid RNase contamination.
- Transcript produced from the control template is 640 nt.