

Synonym

AP-TNAP, APTNAP, HOPS, HPPA, HPPC, HPPI, HPPO, TNALP, TNAP, TNS-ALP, TNSALP

Source

HRP-Human ALPL Protein, His Tag(ALL-HR2H3) is expressed from human 293 cells (HEK293). It contains AA Leu 18 - Ser 502 (Accession # [P05186-1](#)). Predicted N-terminus: Leu 18

Molecular Characterization

**ALPL(Leu 18 - Ser 502)
P05186-1**

Poly-his

This protein carries a polyhistidine tag at the C-terminus.

The protein has a calculated MW of 55.3 kDa. The protein migrates as 40-43 kDa, 60-65 kDa and >180 kDa when calibrated against [Star Ribbon Pre-stained Protein Marker](#) under reducing (R) condition (SDS-PAGE) due to glycosylation.

Purity

>90% as determined by SDS-PAGE.

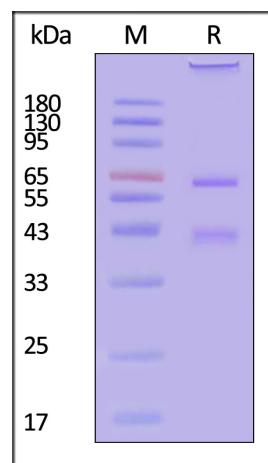
Formulation

Supplied as 0.2 µm filtered solution in 20 mM Tris, 150 mM NaCl, pH7.5 with trehalose as protectant.

Contact us for customized product form or formulation.

Shipping

This product is supplied and shipped with dry ice, please inquire the shipping cost.


Storage

Please protect from light and avoid repeated freeze-thaw cycles.

This product is stable after storage at:

- The product MUST be stored at -70°C or lower upon receipt;
- -70°C for 3 months under sterile conditions.

SDS-PAGE

HRP-Human ALPL Protein, His Tag on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 90% (With [Star Ribbon Pre-stained Protein Marker](#)).

Background

This gene encodes a member of the alkaline phosphatase family of proteins. There are at least four distinct but related alkaline phosphatases: intestinal, placental, placental-like, and liver/bone/kidney (tissue non-specific). The first three are located together on chromosome 2, while the tissue non-specific form is located on chromosome 1. The product of this gene is a membrane bound glycosylated enzyme that is not expressed in any particular tissue and is, therefore, referred to as the tissue-nonspecific form of the enzyme. Alternative splicing results in multiple transcript variants, at least one of which encodes a preproprotein that is proteolytically processed to generate the mature enzyme. This enzyme may play a role in bone mineralization. Mutations in this gene have been linked to hypophosphatasia, a disorder that is characterized by hypercalcemia and skeletal defects.

**Discounts, Gifts,
and more!**

» www.acrobiosystems.com