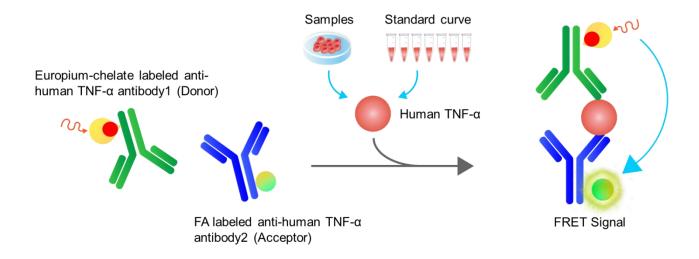


Human Tumor Necrosis Factor Alpha (TNF-α) Detection Kit (TR-FRET)

Catalog Number: FRT-C02

Assay Tests: 100 tests & 500 tests

For Research Use Only. Not For Use In Diagnostic Or Therapeutic Procedure


IMPORTANT: Please carefully read this manual before performing your experiment.

PRODUCT OVERVIEW

The Human Tumor Necrosis Factor Alpha (TNF- α) Detection kit (TR-FRET) can detect the Human Tumor Necrosis Factor Alpha (TNF- α) in homogeneous system within 2 hours, it is highly sensitive, short detection time and easy to use. This kit is specifically designed for the accurate quantitation of human TNF-alpha from cell culture supernatant, serum and plasma.

ASSAY PRINCIPLE

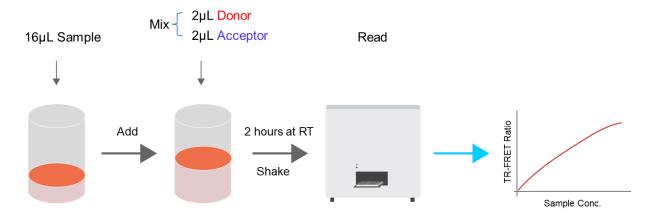
This human Tumor Necrosis Factor Alpha (TNF- α) detection kit is based on a TR-FRET sandwich assay using two different specific antibodies. One antibody is labeled with a europium chelate (as the donor), while the second is labeled with FA (as the acceptor). In the presence of human TNF- α , the donor and acceptor are in close proximity because both labeled antibodies bind to the human TNF- α . When excited by a specific light source (337 nm), the donor emits a 620 nm signal, which is absorbed by the acceptor and results in a 665 nm emission.

NOTE:

- 1. For Research Use Only. Not For Use in Diagnostic or Therapeutic Procedures.
- 2. The kit should not be used beyond the expiration date on the kit label.
- 3. Do not mix or substitute reagents with those from other lots or sources.

CONTENTS AND STORAGE

Store the unopened kit at 2-8 °C. Do not use the kit after the expiration date indicated on the kit label.


Catalog	Contents	Size (100 tests)	Size (500 tests)	STORAGE OF OPENED/ RECONSTITUTED MATERIAL
FRTC02-C01	Anti-TNF-α Antibody Europium- chelate	100 tests	500 tests	-70°C, avoid light
FRTC02-C02	FA Labeled Anti-TNF-α Antibody	100 tests	500 tests	-70°C, avoid light
FRTC02-C03	Human TNF-α Standard	15 µg	15 µg	-70°C
DB-04	TR-FRET Sample Dilution Buffer, pH7.4	50 mL	50 mL	2-8°C
DB-05	TR-FRET Detection Buffer, pH7.4	50 mL	50 mL	2-8°C

Note: Anti-TNF-α Antibody Europium-chelate and FA Labeled Anti-TNF-α Antibody should be protected from light.

REQUIRED MATERIALS NOT SUPPLIED

	Items	Specifications		
Instrument	Microplate reader	Plate reader capable of measuring signals at 665nm/620nm in TR-FRET mode. Example: BMG Labtech CLARIOstar Plus.		
	Microporous plate shaker	-		
Reagents	Deionized, ultrapure or distilled water	-		
	Single channel and multichannel channel pipettes	There must be calibrated pipettes, with 10 $\mu L,200~\mu L$ and 1000 μL precision		
	Pipette tips	Low adsorption pipette tips, all tips need to fit the pipettes		
Consumables	96 or 384-well white plate	Non-transparent 96 or 384-well low volume white plates typically give the lowest background signal. e.g., 384-well white plate (iSTAR, Cat. No. GT247.008)		
	EP Tubes	For to prepare standard dilutions and working solutions.		

QUICK GUIDE

REAGENT PREPARATION

- 1. Bring all reagents to room temperature (20°C-25°C) before use. If crystals have formed in the buffer solution, warm to room temperature and mix gently until the crystals have completely dissolved.
- Reconstitute the provided lyophilized materials to stock solutions with **Deionized, ultrapure or** distilled water as recommended in the following table 1 and solubilize for 15 to 30 minutes at room
 temperature with occasional gentle mixing.
- 3. Avoid vigorous shaking or vertexing. The reconstituted stock solutions should be stored at -70°C. It is recommended not to freeze-thaw more than 2 times.

Note: Anti-TNF-α Antibody Europium-chelate and FA Labeled Anti-TNF-α Antibody stock solution should be protected from light.

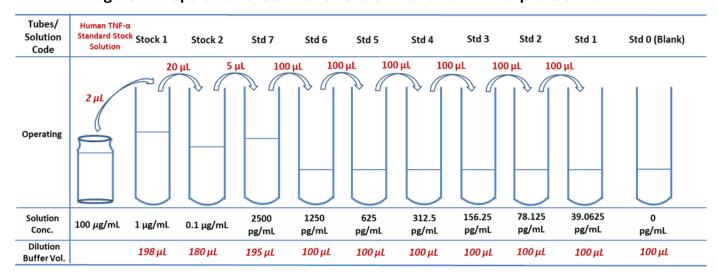

The volume of buffer required for reconstitution **Stock Solution** Catalog Components Conc. Size (100 tests) Size (500 tests) Anti-TNF-α Antibody FRTC02-C01 300 µL water 300 µL water About 4 µg/mL Europium-chelate FA Labeled Anti-TNF-α About 64 µg/mL FRTC02-C02 60 µL water 300 µL water Antibody Human TNF-α Standard FRTC02-C03 150 µL water 150 µL water 100 µg/mL

Table 1. Reconstitution methods for 100 tests and 500 tests

PROCEDURE OF ASSAY

- Each well requires 16 μL of standard or sample, and 4 μL of the pre-mix donor & acceptor solution.
- Serially dilute the standard stock solution with DB-04 (TR-FRET Sample Dilution Buffer, pH7.4) or
 a solution with the same matrix as the test samples.
- It is recommended to prepare the standard curve using a solution with the same matrix as the test samples, so as to reduce interference from matrix effects and obtain more accurate backcalculated sample concentrations.
- Prepare standard serial dilutions.
 - Label a tube "Stock 1". Add 2 μL of the reconstituted human TNF-α Standard (100 μg/mL) and
 198 μL of Sample Dilution Buffer (DB-04 or a solution with the same matrix as the samples)
 to tube Stock 1, gently mix well.
 - Label a tube "Stock 2". Add 20 μL of Stock 1 and 180 μL of Sample Dilution Buffer to tube Stock
 2, gently mix well.
 - Label 7 tubes, one for each standard point: Std.-1, Std.-2, Std.-3, Std.-4, Std.-5, Std.-6, Std.-7.
 - Add 5 μ L of the liquid from **Stock 2** and 195 μ L of **Sample Dilution Buffer** to tube Std.-7, thoroughly mix (Std.-7 = 2500 pg/mL).
 - Prepare 1:1 serial dilutions for the standard curve as follows: Add 100 μL of Sample Dilution
 Buffer to each tube (Std.-1, Std.-2, Std.-3, Std.-4, Std.-5, Std.-6).
 - Transfer 100 μL of liquid from Std.-7 to the tube Std.-6, and thoroughly mix (Std.-6 = 1250 pg/mL).
 - Continue to transfer 100 μ L of liquid from previous dilution tube to the next dilution tube until add liquid to tube Std.-1.
 - Sample Dilution Buffer serves as zero standard (blank).

Figure 1. Preparation of serial dilutions of the human TNF-alpha standard

- 2. Prepare Biological Samples. Each well requires **16** μ **L** of sample. All samples with a concentration above the highest standard (Std 7) must be diluted in **Sample Dilution Buffer**.
- Prepare Donor Working Solution. Dilute the Anti-TNF-α Antibody Europium-chelate stock solution
 1:4 with DB-05.
- 4. Prepare Acceptor Woking Solution. Dilute the FA Labeled Anti-TNF-α Antibody stock solution 1:4 with DB-05.
- 5. Prepare the pre-mix solution. Pre-mix the Donor and Acceptor working solution 1:1 (v/v).
- 6. Add 16 μL of standards or samples, 4 μL of the pre-mix donor & acceptor solution to each well. Refer to **followed figure 2 and Table 2** for the design of microplate layout according to the experimental requirements and add the corresponding reaction solution into the corresponding plate holes
- 7. Seal the plate with microplate sealing film and incubate at room temperature (20°C-25°C) for **2** hours on orbital shaker at 400-600 rpm.
- 8. Data Recording. Use the TR-FRET module of a microplate reader to read the fluorescence signal at 665nm and 620nm (the excitation wavelength is 337 nm).

Note:

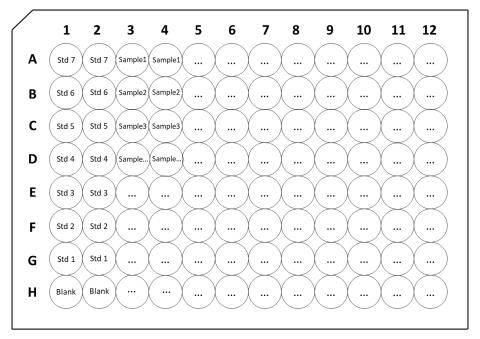


Figure 2. Plate layout

Table 2. Samples adding to microplate

	1	2	3	4
	16 μL Std7	16 µL Std7	16 μL Sample1	16 μL Sample1
Α	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα
	antibodies	antibodies	antibodies	antibodies
	16 μL Std6	16 μL Std6	16 µL Sample2	16 µL Sample2
В	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα
	antibodies	antibodies	antibodies	antibodies
	16 μL Std5	16 μL Std5	16 µL Sample3	16 µL Sample3
С	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα
	antibodies	antibodies	antibodies	antibodies
	16 μL Std4	16 μL Std4	16 μL Sample	16 μL Sample
D	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα
	antibodies	antibodies	antibodies	antibodies
	16 μL Std3	16 μL Std3		
E	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα		
	antibodies	antibodies		
	16 μL Std2	16 μL Std2		
F	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	•••	
	antibodies	antibodies		
	16 μL Std1	16 μL Std1		
G	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα	•••	
	antibodies	antibodies		
	16 μL Sample Dilution Buffer	16 µL Sample Dilution Buffer		
н	4 μL pre-mixed TNFα	4 μL pre-mixed TNFα		
	antibodies	antibodies		

CALCULATION OF RESULTS

1. Calculate the TR-FRET Ratio of the acceptor and donor emission signals for each individual well.

Ratio =
$$\frac{\text{Signal 665 nm}}{\text{Signal 620 nm}} \times 10^4$$
.

- Calculate the Mean Ratio for each sample, standard or control and subtract average zero standard
 Ratio to obtain the ∆Ratio value.
- 3. The standard curve is plotted with the standard concentration as x-axis and the ∆Ratio as y-axis.
 Establish a standard curve by processing the data using computer software capable of executing a four-parameter logistic (4-PL) curve fitting. Normal range of Standard curve: R2 ≥ 0.9900.
- 4. Detection range: 39.0625 pg/mL-2500 pg/mL. If the Ratio value of the sample to be tested is higher than 2500 pg/mL, the sample shall be diluted with dilution buffer and assay repeated. If the ΔRatio value of the sample to be tested is lower than 39.0625 pg/mL, the sample should be reported < 39.0625 pg/mL.</p>

TYPICAL DATA

Note: For each experiment, a standard curve needs to be set for each microplate, and the specific Ratio value may vary depending on different laboratories, testers, or equipment. The following example data is for reference only. The sample concentration was calculated based on the results of the standard curve.

Standard curve generated in TR-FRET Sample Dilution Buffer, pH7.4 (DB-04):

Human TNF-alpha Standard (pg/mL)	TR-FRET Ratio	Δ Ratio	CV(%)	
2500	15677	14479	1.8	20000
1250	8446	7248	7.5	15000-
625	4785	3587	3.4	ig 10000- R2=1.0000
312.5	2928	1730	3.1	5000-
156.25	2019	821	4.3	a service and the service and
78.125	1521	322	3.5	0 1000 2000 3000
39.0625	1409	211	6.7	Sample Conc. (pg/mL)
Blank	1198	0	2.2	

Standard curve generated in DMEM with 10% FBS:

Human TNF-α Standard (pg/mL)	TR-FRET Ratio	Δ Ratio	CV (%)	25000¬
5000	23706	21912	0.5	20000-
2500	13756	11963	1.2	. <u>9</u> 15000-
1250	7901	6107	2.2	9 15000- R2=1.0000
625	4916	3123	3.0	5000-
312.5	3283	1489	1.4	0
156.25	2521	727	0.6	0 2000 4000 6000 Sample Conc. (pg/mL)
78.125	2077	283	2.7	
Blank	1794	0	3.8	

Standard curve generated in RPMI 1640 with 10% FBS:

Human TNF-α Standard (pg/mL)	TR-FRET Ratio	Δ Ratio	CV (%)	15000
2500	14251	12797	2.3	
1250	8029	6574	4.6	oj 10000- R2=0.9999
625	4870	3415	1.8	R2=0.9999
312.5	3124	1669	2.3	per la companya di managan di man
156.25	2184	730	0.9	0 1000 2000 3000
78.125	1882	427	4.7	Sample Conc. (pg/mL)
39.0625	1615	160	2.9	
Blank	1454	0	1.1	

PERFORMANCE CHARACTERISTICS

Sensitivity

The minimum detectable concentration was determined by adding twice standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration.

Matrix	TR-FRET Sample Dilution Buffer, pH7.4 (DB-04)	DMEM with 10% FBS	RPMI 1640 with 10% FBS
Assay range	39.0625 pg/mL-2500 pg/mL	78.125 pg/mL-5000 pg/mL	39.0625 pg/mL-2500 pg/mL
Limit of detection (LOD)	18.59 pg/mL	28.91 pg/mL	25.19 pg/mL
Limit of Quantitation (LOQ)	39.0625 pg/mL	78.125 pg/mL	39.0625 pg/mL

Linearity

To assess the linearity of the assay, samples spiked with high concentrations of human TNF-α were serially diluted with TR-FRET Sample Dilution Buffer, pH7.4 (DB-04) to produce samples with values within the dynamic range of the assay.

	Dilution factor			Plasma	Cell culture medium		
Dile			Sodium citrate	Heparin	EDTA	DMEM	RPMI1640
1:4	Average Recovery (%)	92.37	81.79	85.52	83.84	99.28	94.15
1.4	Dongo (0/)	00 52 07 26	78.27-86.10	82.10-	80.85-	96.03-	88.16-
	Range (%)	88.53-97.26	/8.2/-86.10	93.72	91.69	103.11	98.80
1:8	Average Recovery (%)	98.48	91.40	92.01	95.73	100.25	97.70
1.0	Pango (04)	94.07-	86.24-97.06	89.51-	90.02-	97.41-	92.62-
	Range (%)	103.36	86.24-97.06	95.92	102.62	102.37	103.41
1:16	Average Recovery (%)	94.39	94.54	94.84	98.85	103.28	97.51
1.10	Range (%)	92.00-	93.32-97.92	86.15-	86.59-	91.89-	87.70-
	mange (70)	101.40	90.02-97.92	101.07	110.35	110.13	108.85

Inter-Assay/Intra-Assay Precision

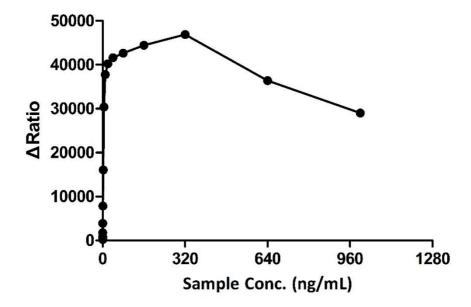
Five Samples of known concentrations were tested repeatedly 16 times in batches to assess within-batch precision and accuracy. Five Samples of known concentrations were tested repeatedly across three independent analytical batches to evaluate between-batch precision and accuracy.

		Intra	-assay Prec	ision			Inter	-assay Pred	ision	
Sample										
Conc.	2500	1875	500	78.13	39.06	2500	1875	500	78.13	39.06
(pg/mL)										
Number of	16	16	16	16	16	3	3	3	3	3
Replicate	10	10	10	10	10	3	ა	o	3	3
Mean	2408.34	1791.18	458.68	81.87	50.31	2438.62	1020 00	483.87	79.05	39.33
(pg/mL)	2406.34	1/91.10	430.00	01.07	50.51	2436.62	1838.90	403.07	79.05	39.33
Standard	40.52	35.25	15.67	8.10	6.85	142.26	75.01	21.19	12.51	6.42
Deviation	40.52	35.25	15.67	6.10	0.65	142.20	75.01	21.19	12.51	6.42
CV (%)	1.68	1.97	3.42	9.89	13.62	5.83	4.08	4.38	15.83	16.32
Recovery (%)	96.33	95.53	91.74	104.79	128.79	97.54	98.07	96.77	101.18	100.68

Calibration

This immunoassay is calibrated against a highly purified CHO cell-expressed recombinant human TNF- α produced at ACROBiosystems. To convert sample values obtained with the Human TNF- α Detection kit (TR-FRET) to approximate NIBSC (17/232) nominally assigned mass values, use the equation below.

NIBSC/WHO (17/232) approximate value (U/mL) = 0.1 \times ACRO Human TNF- α value (pg/mL).


Specificity

No cross-reactivity was observed when this kit was used to analyze the following recombinant cytokines at up to 1 μ g/mL.

	Human	
IL-2	IL-11	G-CSF
IL-3	IL-12B	M-CSF
IL-4	IL-15	SCF
IL-5	IL17A	BMP-2
IL-6	IL-18	FGF basic
IL-7	IL-21	Flt-3 Ligand
IL-8	IFN-alpha 1	VEGF165
IL-9	IFN-gamma	Thrombopoietin
IL-10	GM-CSF	TGF-Beta 1

Hook Effect

Not be affected by the concentration of human TNF- α up to 320 ng/mL.

TROUBLESHOOTING GUIDE

Problem	Cause	Solution		
Large CV	* Inaccurate pipetting * Air bubbles in wells	* Check pipettes * Remove bubbles in wells		
High background	Reagent contamination Interfering components	* Avoid contaminating the reagents. * Ensure the purity of the samples or dilute it to reduce interference		
Hook	 * Inappropriate sample detection concentration * The usage concentration of the donor/acceptor is not applicable to certain special samples 	* Sample dilution optimization * Optimize the usage concentration of donors/acceptor		
Very low readings across the plate	Incorrect wavelengths or gain value set Insufficient reaction time	* Check filters/gain/reader * Increase reaction time		
Samples are reading too high, but standard curve looks fine	* Samples contain target levels above assay range	* Dilute samples and run again		
Matrix interference	* Sample matrix does not match the standard curve	* Dilute the sample with a larger dilution factor to reduce matrix interference and perform spike recovery experiments. * Prepare the standard curve with the same matrix as the test sample in order to reduce the interference of matrix effects and obtain more accurate sample back-calculated concentrations.		
Low instrument detection sensitivity	* Instrument parameters are not appropriate	* Set the instrument's delay time to 50- 100µs, the Integration time to 100-400µs, and select the instrument gain within an appropriate range to avoid signal oversaturation or too low.		