

Limited Use & License Disclosure

BY USE OF THIS PRODUCT, RESEARCHER AGREES TO BE BOUND BY THE FOLLOWING TERMS OF LIMITED USE OF THIS CELL LINE PRODUCT.

- If the researcher is not willing to accept the terms of limited use of this cell line product, and the product is unused, ACRO will accept return of the unused product.
- Researchers may use this product for research use only, no commercial use is allowed.

 "Commercial use" means any and all uses of this product and derivatives by a party for profit or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research.
- This cell line is neither intended for any animal or human therapeutic purposes nor for any direct human in vivo use. You have no right to share, modify, transfer, distribute, sell, sublicense, or otherwise make the cell line available for use to other researchers, laboratories, research institutions, hospitals, universities, or service organizations.
- ACROBIOSYSTEMS MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE SUITABILITY OF THE CELL LINE FOR ANY PARTICULAR USE.
- ACROBIOSYSTEMS ACCEPTS NO LIABILITY IN CONNECTION WITH THE HANDLING OR USE OF THE CELL LINE.
- Modifications of the cell line, transfer to a third party, or commercial use of the cell line may
 require a separate license and additional fees. Please contact <u>order.cn@acrobiosystems.com</u> for
 further details.

Raji/Human CD19 Knockout Stable Cell Line

Catalog No.	Size
SCRAJ-STT216	$2 \times (1 \text{ vial contains } \sim 5 \times 10^6 \text{ cells})$

• Description

The Raji/Human CD19 Knockout Stable Cell Line was generated from Raji cells through targeted knockout of human CD19 (Gene ID: 930). The expression level of human CD19 was confirmed by flow cytometry. Mutated sequences of human CD19 produced by non-homologous end joining (NHEJ) were confirmed through genomic sequencing.

• Application

• Useful for cell-based CD19 target-specific analysis

• Cell Line Profile

Cell line	Raji/Human CD19 Knockout Stable Cell Line		
Host Cell	Raji		
Property	suspension		
Complete Growth Medium	RPMI Medium 1640 + 10% FBS		
Selection Marker	NA		
Incubation	37°C with 5% CO ₂		
Doubling Time	18-22 hours		
Transduction Technique	Lentivirus		

• Materials Required for Cell Culture

- PRMI-1640 Medium (ATCC, Cat. No. 30-2001TM)
- Fetal bovine serum (Gibco, Cat. No. A5669701)
- Penicillin-Streptomycin (Gibco, Cat. No. 15140-122)
- Phosphate Buffered Saline (1X) (HyClone, Cat. No. SH30256.01)
- Culture Medium: RPMI Medium 1640 + 10% FBS, 1%P/S
- Freeze Medium: 90% FBS, 10% (V/V) DMSO
- T-75 Culture flask (Corning, Cat. No. 430641)
- Cryogenic storage vials (SARSTEDT, Cat. No. 72.379.007)
- Thermostat water bath
- Centrifuge (Cence, Model: L550)
- Cell counter (MONWEI, Model: SmartCell200A Plus)
- CO₂ Incubator (Thermo, Model: 3111)
- Biological Safety Cabinet (Thermo, Model: 1389)

• Recovery

- 1. Thaw the vial by gently agitating it in a 37°C water bath. To minimize the risk of contamination, ensure the cap remains out of the water. Thawing should be completed quickly, typically within 3-5 minutes.
- 2. After thawing, promptly remove the vial from the water bath and decontaminate it by spraying with 70% ethanol. From this point onward, all operations must be performed under strict aseptic conditions.
- 3. Transfer the contents of the vial to a centrifuge tube containing 4.0 mL of culture medium.
- 4. Count viable cells and centrifuge at approximately 1000 rpm for 5 minutes.
- 5. Discard the supernatant and resuspend the cell pellet in an appropriate amount of fresh culture medium. Adjust the cell density of the suspension to 1×10^6 viable cells/mL and transfer cells to an appropriate size vessel.
- 6. Incubate at 37°C with 5% CO₂ incubator.

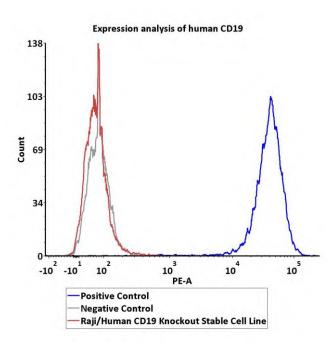
• Subculture

Cell viability may be low after thawing, and full recovery (viability >90%) may take up to 1-2 weeks. Once the cell density reaches approximately 1.5×10^6 viable cells/mL, adjust the density to a range of 1×10^5 - 2×10^5 viable cells/mL by either adding the fresh culture medium or replacing the existing culture medium. Avoid allowing the cell density to exceed 2×10^6 cells/mL, as this may negatively impact cell performance in subsequent passages. T-75 flasks are recommended for subculturing.

• **Subculturing Frequency:** It is recommended to subculture every 3-4 days, adjusting the frequency based on the cell density in your specific culture system.

• Cryopreservation

- 1. Count viable cells and harvest the cell suspension.
- 2. Centrifuge at 1000 rpm for 5 min at room temperature and resuspend cells in ice cold freezing medium to a concentration of 5×10^6 to 1×10^7 cells/mL.
- 3. Aliquot the cell suspension into cryogenic storage vials. Place the vials in a programmable cooler or an insulated box placed in a -80°C freezer overnight, then transfer to liquid nitrogen storage for long-term storage.


Note: It is recommended to establish a cell bank at the earliest possible passage for long-term use.

• Storage

Cells must be received in a frozen state on dry ice and should be transferred to liquid nitrogen or a -80°C freezer immediately upon receipt. If stored in a -80°C freezer, it is recommended to limit the storage period to no more than two weeks. For long-term preservation, transfer the cells to liquid nitrogen is highly recommended.

• Receptor Assay

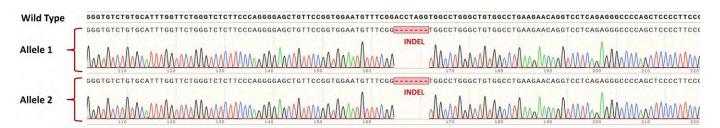

Catalog No.	Stable Cell Line	MFI for CD19 (PE)
NA	Negative Control Cell	74.34
NA	Positive Control Cell	39262.23
SCRAJ-STT216	Raji/Human CD19 Knockout Stable Cell Line	63.92

Fig1. Expression analysis of human CD19 on Raji/Human CD19 Knockout Stable Cell Line by FACS.

Cell surface staining was performed on Raji/Human CD19 Knockout Stable Cell Line using PE-labeled anti-human CD19 antibody. The Raji cells were stained with PE-labeled anti-human CD19 antibody as the positive control cell. The Raji cells were stained with PE-labeled isotype control antibody as the negative control cell.

• Sequencing Analysis

Fig2. Genomic Sequencing of human CD19 in the Raji/Human CD19 Knockout Stable Cell Line.

Sanger sequencing was used for mutation analysis of human CD19. The sequencing results demonstrated that frameshift mutations were generated in the human CD19 gene in the Raji/Human CD19 Knockout Stable Cell Line.

• Related Products

<u>Products</u>	Cat.No.
HEK293/hClaudin-18.2 Cell Line	CHEK-ATP033
HEK293/hGPRC5D Cell Line	CHEK-STP042
HEK293/Human TROP-2 Stable Cell Line	CHEK-ATP036
HEK293/Human Nectin-4 Stable Cell Line	CHEK-ATP035
HEK293/Human Anti-CD19 Stable Cell Line	CHEK-ATS056
CHO/Human GPRC5D Stable Cell Line	CCHO-STP078
HEK293/Human CEACAM5 Stable Cell Line	CHEK-ATP083
HEK293/Human ROR1 Stable Cell Line	CHEK-ATP084
HEK293/Human Transferrin R Stable Cell Line	CHEK-ATP089
HEK293/Human DLL3 Stable Cell Line	CHEK-ATP090
HEK293/Human FOLR1 Stable Cell Line	CHEK-ATP091
HEK293/Human Glypican-3 (GPC3) Stable Cell Line	CHEK-ATP092
CHO/Human DLL3 Stable Cell Line	SCCHO-ATP111
CHO/Human Glypican-3 (GPC3) Stable Cell Line	SCCHO-ATP112
HEK293/Human Transferrin Stable Cell Line	CHEK-ATP115
HEK293/Human NAPI-IIb Stable Cell Line	CHEK-ATP116
HEK293/Human Mesothelin Stable Cell Line	CHEK-ATP119
CHO/Human Mesothelin Stable Cell Line	SCCHO-ATP120
CHO/Human STEAP1 Stable Cell Line	SCCHO-ATP121
HEK293/Human ENPP3 Stable Cell Line	CHEK-ATP122
HEK293/Human LRRC15 Stable Cell Line	CHEK-ATP123
HEK293/Human Claudin-1 Stable Cell Line	CHEK-ATP124
HEK293/Human Integrin alpha V beta 6 Stable Cell Line	CHEK-ATP125
HEK293/Human B7-H4 Stable Cell Line	CHEK-ATP126
HEK293/Human Cadherin-6 Stable Cell Line	CHEK-ATP127
HEK293/Human LY6G6D Stable Cell Line	CHEK-ATP137
HEK293/Human Claudin-6 Stable Cell Line	CHEK-ATP138
HEK293/Human Claudin-9 Stable Cell Line	CHEK-ATP139

• Related Products

<u>Products</u>	Cat.No.
CHO/Human c-MET Stable Cell Line	SCCHO-ATP141
HEK293/Human c-MET Stable Cell Line	CHEK-ATP146
HEK293/Human EGF R Stable Cell Line	CHEK-ATP148
HEK293/Human ErbB3 Stable Cell Line	CHEK-ATP149
HEK293/Human ErbB2 Stable Cell Line	CHEK-ATP150
HEK293/Human uPAR Stable Cell Line	CHEK-ATP151
CHO/Human uPAR Stable Cell Line	SCCHO-ATP152
HEK293/Human CD19 Stable Cell Line	CHEK-ATP003
HEK293/Human STEAP1 Stable Cell Line	CHEK-ATP154
CHO/Human B7-H3 (4Ig) Stable Cell Line	SCCHO-ATP169
CHO/Human CD79A&CD79B Stable Cell Line	SCCHO-ATP170
CHO/Human CD79B Stable Cell Line	SCCHO-ATP171
HEK293/Human Cadherin-17 Stable Cell Line	CHEK-ATP173
HEK293/Human EpCAM Stable Cell Line	CHEK-ATP175
HEK293/Human TPBG Stable Cell Line	CHEK-ATP176
CHO/Cynomolgus Glypican-3 (GPC3) Stable Cell Line	SCCHO-ATP179
HEK293/Human GUCY2C Stable Cell Line	CHEK-ATP182
HEK293/Human SEZ6 Stable Cell Line	CHEK-ATP183
HEK293/Human FAP Stable Cell Line	CHEK-ATP184
HEK293/Human PSMA Stable Cell Line	CHEK-ATP185
HEK293/Human PTK7 Stable Cell Line	CHEK-ATP186
HEK293/Human MCAM Stable Cell Line	CHEK-ATP195
HEK293/Human GPC3 ΔHS Stable Cell Line	CHEK-ATP212
HEK293/Human c-MET&ErbB3 Stable Cell Line	CHEK-ATP217
HEK293/Human BCMA Stable Cell Line	CHEK-ATP218