

MSR1 Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP17001B

Specification

MSR1 Antibody (C-term) - Product Information

Application WB,E
Primary Accession P21757
Other Accession P21758,

NP_619729.1, NP_619730.1

Reactivity Human, Mouse

Predicted Bovine
Host Rabbit
Clonality Polyclonal
Isotype Rabbit Ig
Antigen Region 336-364

MSR1 Antibody (C-term) - Additional Information

Gene ID 4481

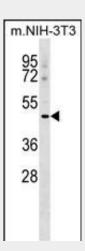
Other Names

Macrophage scavenger receptor types I and II, Macrophage acetylated LDL receptor I and II, Scavenger receptor class A member 1, CD204, MSR1, SCARA1

Target/Specificity

This MSR1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 336-364 amino acids from the C-terminal region of human MSR1.

Dilution


WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

MSR1 Antibody (C-term) (Cat. #AP17001b) western blot analysis in mouse NIH-3T3 cell line lysates (35ug/lane). This demonstrates the MSR1 antibody detected the MSR1 protein (arrow).

MSR1 Antibody (C-term) - Background

This gene encodes the class A macrophage scavenger

receptors, which include three different types (1, 2, 3) generated

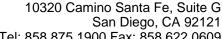
by alternative splicing of this gene. These receptors or isoforms

are macrophage-specific trimeric integral membrane glycoproteins

and have been implicated in many macrophage-associated

physiological and pathological processes including atherosclerosis,

Alzheimer's disease, and host defense. The isoforms type 1 and type


2 are functional receptors and are able to mediate the endocytosis

of modified low density lipoproteins (LDLs). The isoform type 3

does not internalize modified LDL (acetyl-LDL) despite having the

domain shown to mediate this function in the types 1 and 2

isoforms. It has an altered intracellular

Tel: 858.875.1900 Fax: 858.622.0609

Precautions

MSR1 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

MSR1 Antibody (C-term) - Protein Information

Name MSR1

Synonyms SCARA1

Function

Membrane glycoproteins implicated in the pathologic deposition of cholesterol in arterial walls during atherogenesis. Two types of receptor subunits exist. These receptors mediate the endocytosis of a diverse group of macromolecules, including modified low density lipoproteins (LDL) (PubMed:2251254). Isoform III does not internalize acetylated LDL (PubMed:9548586).

Cellular Location

Membrane; Single-pass type II membrane protein.

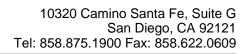
Tissue Location

Isoform I, isoform II and isoform III are expressed in monocyte-derived macrophages. Isoform I and isoform II are expressed in the liver, placenta and brain.

MSR1 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture


MSR1 Antibody (C-term) - Citations

 AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

processing and is trapped within the endoplasmic reticulum, making it unable to perform endocytosis. The isoform type 3 can inhibit the function of isoforms type 1 and type 2 when co-expressed, indicating a dominant negative effect and suggesting a mechanism for regulation of scavenger receptor activity in macrophages.

MSR1 Antibody (C-term) - References

Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010) Wang, Y., et al. J. Hum. Genet. 55(8):490-494(2010) Voruganti, V.S., et al. Am. J. Clin. Nutr. 91(6):1574-1583(2010) Nonomura, N., et al. Cancer Sci. 101(6):1570-1573(2010) Seizer, P., et al. Semin. Thromb. Hemost. 36(2):157-162(2010)

