

Phospho-AKT1(Thr308)) Antibody

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3743a

Specification

Phospho-AKT1(Thr308)) Antibody - Product Information

Application IF, DB,E **Primary Accession** P31749 Other Accession NP 005154.2 Reactivity Human Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit Ig Calculated MW 55686

Phospho-AKT1(Thr308)) Antibody - Additional Information

Gene ID 207

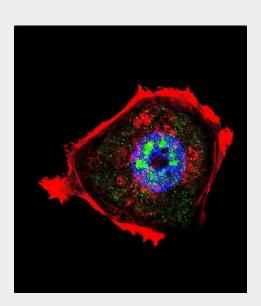
Other Names

RAC-alpha serine/threonine-protein kinase, Protein kinase B, PKB, Protein kinase B alpha, PKB alpha, Proto-oncogene c-Akt, RAC-PK-alpha, AKT1, PKB, RAC

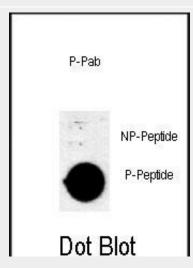
Target/Specificity

This AKT1 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding Thr308 of human AKT1.

Dilution


IF~~1:10~50 DB~~1:500

Format


Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Confocal immunofluorescent analysis of Phospho-AKT1 (Thr308)
Antibody(Cat#AP3743a) with MCF-7 cell followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green). Actin filaments have been labeled with Alexa Fluor 555 phalloidin (red). DAPI was used to stain the cell nuclear (blue).

Dot blot analysis of anti-Phospho-AKT1 (Thr308) Antibody Phospho-specific Pab (Cat. #AP3743a) on nitrocellulose membrane. 50ng of Phospho-peptide or Non Phospho-peptide per dot were adsorbed.

Precautions

Phospho-AKT1(Thr308)) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Phospho-AKT1(Thr308)) Antibody - Protein Information

Name AKT1

Synonyms PKB, RAC

Function

AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:15526160, PubMed:<a href="http://www.uniprot.org/ci

tations/11882383"

target="_blank">11882383,

PubMed:<a href="http://www.uniprot.org/ci tations/21620960"

target=" blank">21620960,

PubMed: <a href="http://www.uniprot.org/ci tations/21432781"

target="_blank">21432781). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:<a href="http://www.u niprot.org/citations/15526160"

target="blank">15526160,

PubMed: <a href="http://www.uniprot.org/ci tations/11882383"

target="_blank">11882383,

PubMed:<a href="http://www.uniprot.org/ci tations/21620960"

target=" blank">21620960,

PubMed:<a href="http://www.uniprot.org/ci tations/21432781"

target="_blank">21432781). Over 100 substrate candidates have been reported so far, but for most of them, no isoform

specificity has been reported (PubMed:<a h ref="http://www.uniprot.org/citations/15526 160" target=" blank">15526160,

PubMed:<a href="http://www.uniprot.org/ci tations/11882383"

target="_blank">11882383,

PubMed:<a href="http://www.uniprot.org/ci tations/21620960"

target="_blank">21620960,

PubMed:<a href="http://www.uniprot.org/ci

Antibody working concentrations are 0.6ug per ml.

Phospho-AKT1(Thr308)) Antibody - Background

The serine-threonine protein kinase encoded by the AKT1 gene is catalytically inactive in serum-starved primary and immortalized fibroblasts, AKT1 and the related AKT2 are activated by platelet-derived growth factor. The activation is rapid and specific, and it is abrogated by mutations in the pleckstrin homology domain of AKT1. It was shown that the activation occurs through phosphatidylinositol 3-kinase. In the developing nervous system AKT is a critical mediator of growth factor-induced neuronal survival. Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1, which then phosphorylates and inactivates components of the apoptotic machinery. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq].

Phospho-AKT1(Thr308)) Antibody - References

Zhao, W.D., et al. Infect. Immun. 78(11):4809-4816(2010) Sanematsu, F., et al. Circ. Res. 107(9):1102-1105(2010) Nicodemus, K.K., et al. Arch. Gen. Psychiatry 67(10):991-1001(2010) Treekitkarnmongkol, W., et al. World J. Gastroenterol. 16(32):4047-4054(2010) Chen, J., et al. PLoS ONE 5 (8), E12293 (2010) :

tations/21432781" target=" blank">21432781). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed: 11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:<a href="http://www.uniprot.org/c itations/10358075"

target=" blank">10358075). FOXO3

and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NFkappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of prosurvival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF). epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF-I (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:<a href="http://www. uniprot.org/citations/19934221"

target=" blank">19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174, PubMed:20231902). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed: 10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD). modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:<a href="http://ww w.uniprot.org/citations/16982699"

target="_blank">16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed: 16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865).

Cellular Location

Cytoplasm {ECO:0000250|UniProtKB:P31750}. Nucleus. Cell membrane {ECO:0000250|UniProtKB:P31750}. Note=Nucleus after activation by integrin-linked protein kinase 1 (ILK1). Nuclear translocation is enhanced by interaction with TCL1A. Phosphorylation on Tyr-176 by TNK2 results in its localization to the cell membrane where it is targeted for further phosphorylations on Thr-308 and Ser-473 leading to its activation and the activated form translocates to the nucleus. Colocalizes with WDFY2 in intracellular vesicles (PubMed:16792529).

Tissue Location

Expressed in prostate cancer and levels increase from the normal to the malignant state (at protein level). Expressed in all human cell types so far analyzed. The Tyr-176 phosphorylated form shows a significant increase in expression in breast cancers during the progressive stages i.e. normal to hyperplasia (ADH), ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC) and lymph node metastatic (LNMM) stages.

Phospho-AKT1(Thr308)) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Phospho-AKT1(Thr308)) Antibody - Citations

- LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway.
- Functional screen analysis reveals miR-3142 as central regulator in chemoresistance and proliferation through activation of the PTEN-AKT pathway in CML.
- MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer.
- MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway.