PIK3R2 Antibody (Y464) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP8028d ## **Specification** #### PIK3R2 Antibody (Y464) - Product Information Application WB,E Primary Accession 000459 Other Accession <u>Q63788</u>, <u>Q08908</u>, P23726 Reactivity Human Predicted Bovine, Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 81545 Antigen Region 442-471 PIK3R2 Antibody (Y464) - Additional Information # **Gene ID 5296** ## **Other Names** Phosphatidylinositol 3-kinase regulatory subunit beta, Pl3-kinase regulatory subunit beta, Pl3K regulatory subunit beta, PtdIns-3-kinase regulatory subunit beta, Phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta, Pl3-kinase subunit p85-beta, PtdIns-3-kinase regulatory subunit p85-beta, PlK3R2 # **Target/Specificity** This PIK3R2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 442-471 amino acids from human PIK3R2. #### Dilution WB~~1:1000 ## **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. #### Storage Maintain refrigerated at 2-8°C for up to 2 Western blot analysis of PIK3R2 (arrow) using rabbit polyclonal PIK3R2 Antibody (T447) (RB13726). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the PIK3R2 gene (Lane 2) (Origene Technologies). ## PIK3R2 Antibody (Y464) - Background Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. The family has been classified into 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. PIK3R2 binds to activated Protein Tyrosine Kinases, which are phosphorylated, through its SH2 domain, and acts as an adaptor, mediating the association of the P110 catalytic unit to the plasma membrane. weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. ## **Precautions** PIK3R2 Antibody (Y464) is for research use only and not for use in diagnostic or therapeutic procedures. #### PIK3R2 Antibody (Y464) - Protein Information ## Name PIK3R2 ## **Function** Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5- bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) proteintyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed: 23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulindependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity). # PIK3R2 Antibody (Y464) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # PIK3R2 Antibody (Y464) - References Khan, N.A., et al., J. Neurovirol. 9(6):584-593 (2003). Deregibus, M.C., et al., J. Biol. Chem. 277(28):25195-25202 (2002). Cook, J.A., et al., J. Immunol. 169(1):254-260 (2002). Park, I.W., et al., Blood 97(2):352-358 (2001). Zauli, G., et al., FASEB J. 15(2):483-491 (2001).