

HDAC2 Antibody (Center)

Purified Mouse Monoclonal Antibody (Mab)
Catalog # AW5391

Specification

HDAC2 Antibody (Center) - Product Information

Application WB,E
Primary Accession Q92769

Reactivity Human, Mouse

Host Mouse
Clonality Monoclonal
Calculated MW H=55 KDa
Isotype IgG1
Antigen Source HUMAN

HDAC2 Antibody (Center) - Additional Information

Gene ID 3066

Antigen Region 202-488

Other Names

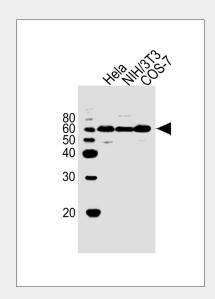
Histone deacetylase 2, HD2, HDAC2

Dilution WB~~1:1000

Target/Specificity

This HDAC2 antibody is generated from a mouse immunized with a recombinant protein between 202-488 amino acids from the Central region of human HDAC2.

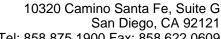
Format


Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein G column, followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions


HDAC2 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

All lanes: Anti-HDAC2 Antibody (Center) at 1:1000 dilution Lane 1: Hela whole cell lysates Lane 2: NIH/3T3 whole cell lysates Lane 3: COS-7 whole cell lysates Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Mouse IgG, (H+L),Peroxidase conjugated at 1/10000 dilution Predicted band size: 55 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

HDAC2 Antibody (Center) - Background

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor complex composed of DNMT1, DMAP1, PCNA, CAF1. Deacetylates TSHZ3 and regulates its transcriptional repressor activity.

HDAC2 Antibody (Center) - Protein Information

Name HDAC2 (HGNC:4853)

Function

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S- phase of DNA-replication with DNMT1 in the other transcriptional repressor complex composed of DNMT1, DMAP1, PCNA, CAF1. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation. Involved in MTA1- mediated transcriptional corepression of TFF1 and CDKN1A.

Cellular Location Nucleus. Cytoplasm

Tissue Location

Widely expressed; lower levels in brain and lung.

HDAC2 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.

HDAC2 Antibody (Center) - References

Yang W.-M., et al. Proc. Natl. Acad. Sci. U.S.A. 93:12845-12850(1996). Ota T., et al. Nat. Genet. 36:40-45(2004). Mungall A.J., et al. Nature 425:805-811(2003). Mural R.J., et al. Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases. Schmidt D.R., et al. Biochemistry 38:14711-14717(1999).