

EHMT2 Blocking Peptide (Center)

Synthetic peptide Catalog # BP21098a

Specification

EHMT2 Blocking Peptide (Center) - Product Information

Primary Accession O96KO7
Other Accession O9Z148

EHMT2 Blocking Peptide (Center) - Additional Information

Gene ID 10919

Other Names

Histone-lysine N-methyltransferase EHMT2, 211-, Euchromatic histone-lysine N-methyltransferase 2, HLA-B-associated transcript 8, Histone H3-K9 methyltransferase 3, H3-K9-HMTase 3, Lysine N-methyltransferase 1C, Protein G9a, EHMT2, BAT8, C6orf30, G9A, KMT1C, NG36

Target/Specificity

The synthetic peptide sequence is selected from aa 361-375 of HUMAN EHMT2

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

EHMT2 Blocking Peptide (Center) - Protein Information

Name EHMT2

Synonyms BAT8, C6orf30, G9A, KMT1C,

EHMT2 Blocking Peptide (Center) - Background

Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys- 373' of p53/TP53, Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself.

EHMT2 Blocking Peptide (Center) - References

Brown S.E.,et al.Mamm. Genome 12:916-924(2001).
Ota T.,et al.Nat. Genet. 36:40-45(2004).
Xie T.,et al.Genome Res. 13:2621-2636(2003).
Mural R.J.,et al.Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
Hirakawa M.,et al.Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.

NG36

Function

Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself.

Cellular Location

Nucleus. Chromosome. Note=Associates with euchromatic regions. Does not associate with heterochromatin

Tissue Location

Expressed in all tissues examined, with high levels in fetal liver, thymus, lymph node, spleen and peripheral blood leukocytes and lower level in bone marrow

EHMT2 Blocking Peptide (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides