HTR2C Blocking Peptide (Center) Synthetic peptide Catalog # BP21341c ## **Specification** HTR2C Blocking Peptide (Center) - Product Information Primary Accession P28335 HTR2C Blocking Peptide (Center) - Additional Information **Gene ID 3358** #### **Other Names** 5-hydroxytryptamine receptor 2C, 5-HT-2C, 5-HT2C, 5-HTR2C, 5-hydroxytryptamine receptor 1C, 5-HT-1C, 5-HT1C, Serotonin receptor 2C, HTR2C, HTR1C #### Target/Specificity The synthetic peptide sequence is selected from aa 274-288 of HUMAN HTR2C #### **Format** Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. #### Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. #### **Precautions** This product is for research use only. Not for use in diagnostic or therapeutic procedures. HTR2C Blocking Peptide (Center) - Protein Information Name HTR2C Synonyms HTR1C ## Function G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also # HTR2C Blocking Peptide (Center) - Background G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including ergot alkaloid derivatives, 1-2,5,-dimethoxy-4-iodophenyl-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via quanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Regulates neuronal activity via the activation of short transient receptor potential calcium channels in the brain, and thereby modulates the activation of pro-opiomelacortin neurons and the release of CRH that then regulates the release of corticosterone. Plays a role in the regulation of appetite and eating behavior, responses to anxiogenic stimuli and stress. Plays a role in insulin sensitivity and glucose homeostasis. ## HTR2C Blocking Peptide (Center) - References Saltzman A.G.,et al.Biochem. Biophys. Res. Commun. 181:1469-1478(1991). Stam N.J.,et al.Eur. J. Pharmacol. 269:339-348(1994). Xie E.,et al.Genomics 35:551-561(1996). Niswender C.M.,et al.Ann. N. Y. Acad. Sci. 861:38-48(1998). Puhl H.L. III,et al.Submitted (APR-2002) to the EMBL/GenBank/DDBJ databases. functions as a receptor for various drugs and psychoactive substances, including ergot alkaloid derivatives, 1-2,5,dimethoxy-4-iodophenyl-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via quanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Regulates neuronal activity via the activation of short transient receptor potential calcium channels in the brain, and thereby modulates the activation of pro-opiomelacortin neurons and the release of CRH that then regulates the release of corticosterone. Plays a role in the regulation of appetite and eating behavior, responses to anxiogenic stimuli and stress. Plays a role in insulin sensitivity and glucose homeostasis. **Cellular Location**Cell membrane; Multi-pass membrane protein **Tissue Location**Detected in brain... ## HTR2C Blocking Peptide (Center) - Protocols Provided below are standard protocols that you may find useful for product applications. • Blocking Peptides