

YAP1 Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP6564b

Specification

YAP1 Antibody (C-term) Blocking Peptide - Product Information

Primary Accession P46937

YAP1 Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 10413

Other Names

Transcriptional coactivator YAP1, Yes-associated protein 1, Protein yorkie homolog, Yes-associated protein YAP65 homolog, YAP1, YAP65

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP6564b was selected from the C-term region of human YAP1. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

YAP1 Antibody (C-term) Blocking Peptide - Protein Information

Name YAP1

YAP1 Antibody (C-term) Blocking Peptide - Background

YAP1 is the human ortholog of chicken YAP protein which binds to the SH3 domain of the Yes proto-oncogene product. This protein contains a WW domain that is found in various structural, regulatory and signaling molecules in yeast, nematode, and mammals, and may be involved in protein-protein interaction.

YAP1 Antibody (C-term) Blocking Peptide - References

Cao,X., Genes Dev. 22 (23), 3320-3334 (2008)Yokoyama,T., Carcinogenesis 29 (11), 2139-2146 (2008)

Synonyms YAP65

Function

Transcriptional regulator which can act both as a coactivator and a corepressor and is the critical downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Plays a key role in tissue tension and 3D tissue shape by regulating cortical actomyosin network formation. Acts via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). Plays a key role in controlling cell proliferation in response to cell contact. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288). The presence of TEAD transcription factors are required for it to stimulate gene expression,

cell growth, anchorage- independent growth, and epithelial mesenchymal

0" target=" blank">18579750).

transition (EMT) induction (PubMed:<a href ="http://www.uniprot.org/citations/1857975

Suppresses ciliogenesis via acting as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity).

Cellular Location

Cytoplasm, Nucleus, Note=Both phosphorylation and cell density can regulate its subcellular localization (PubMed:18158288, PubMed:20048001). Phosphorylation sequesters it in the cytoplasm by inhibiting its translocation into the nucleus (PubMed:18158288, PubMed:20048001). At low density, predominantly nuclear and is translocated to the cytoplasm at high density (PubMed:18158288, PubMed:20048001, PubMed:25849865). PTPN14 induces translocation from the nucleus to the cytoplasm (PubMed:22525271). Localized mainly to the nucleus in the early stages of embryo development with expression becoming evident in the cytoplasm at the blastocyst and epiblast stages (By similarity). {ECO:0000250|UniProtKB:P46938,

{ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:20048001, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:25849865}

Tissue Location

Increased expression seen in some liver and prostate cancers. Isoforms lacking the transactivation domain found in striatal neurons of patients with Huntington disease (at protein level).

YAP1 Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides