

MyD88 Antibody (Center) Blocking Peptide

Synthetic peptide Catalog # BP8521c

Specification

MyD88 Antibody (Center) Blocking Peptide - Product Information

Primary Accession <u>Q99836</u>

MyD88 Antibody (Center) Blocking Peptide - Additional Information

Gene ID 4615

Other Names

Myeloid differentiation primary response protein MyD88, MYD88

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8521c was selected from the Center region of human MyD88. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

MyD88 Antibody (Center) Blocking Peptide - Protein Information

Name MYD88 (<u>HGNC:7562</u>)

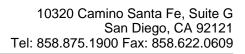
Function

MyD88 Antibody (Center) Blocking Peptide - Background

Adapter protein involved in the Toll-like receptor and IL-1 receptor signaling pathway in the innate immune response. It acts via IRAK1, IRAK2 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response and increases IL-8 transcription. It may be involved in myeloid differentiation.

MyD88 Antibody (Center) Blocking Peptide - References

Bannon, C., et.al., Biochem. J. 423 (1), 119-128 (2009) Burns, K., et.al., J. Biol. Chem. 273 (20), 12203-12209 (1998)


Adapter protein involved in the Toll-like receptor and IL-1 receptor signaling pathway in the innate immune response (PubMed:15361868, PubMed:18292575, PubMed:33718825). Acts via IRAK1, IRAK2, IRF7 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed: 15361868, PubMed:24316379, PubMed:19506249). Increases IL-8 transcription (PubMed: <a hre f="http://www.uniprot.org/citations/901386 3" target=" blank">9013863). Involved in IL-18-mediated signaling pathway. Activates IRF1 resulting in its rapid migration into the nucleus to mediate an efficient induction of IFN-beta, NOS2/INOS, and IL12A genes. Upon TLR8 activation by GU-rich single-stranded RNA (GU-rich RNA) derived from viruses such as SARS-CoV-2, SARS-CoV and HIV-1, induces IL1B release through NLRP3 inflammasome activation (PubMed:33718825). MyD88-mediated signaling in intestinal epithelial cells is crucial for maintenance of gut homeostasis and controls the expression of the antimicrobial lectin REG3G in the small intestine (By similarity).

Cellular Location Cytoplasm. Nucleus

Tissue Location Ubiquitous..

MyD88 Antibody (Center) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides