




**SLC27A5 Antibody (Center) Blocking Peptide** 

Synthetic peptide Catalog # BP9015c

# **Specification**

SLC27A5 Antibody (Center) Blocking Peptide - Product Information

Primary Accession <a href="Q9Y2P5">Q9Y2P5</a>

SLC27A5 Antibody (Center) Blocking Peptide - Additional Information

**Gene ID** 10998

### **Other Names**

Bile acyl-CoA synthetase, BACS, Bile acid-CoA ligase, BA-CoA ligase, BAL, Cholate--CoA ligase, Fatty acid transport protein 5, FATP-5, Fatty-acid-coenzyme A ligase, very long-chain 3, Solute carrier family 27 member 5, Very long-chain acyl-CoA synthetase homolog 2, VLCS-H2, VLCSH2, Very long-chain acyl-CoA synthetase-related protein, VLACS-related, VLACSR, SLC27A5, ACSB, ACSVL6, FACVL3, FATP5

### Target/Specificity

The synthetic peptide sequence used to generate the antibody <a href=/products/AP9015c>AP9015c</a> was selected from the Center region of human SLC27A5. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

# **Format**

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

### Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

### **Precautions**

This product is for research use only. Not for use in diagnostic or therapeutic

# SLC27A5 Antibody (Center) Blocking Peptide - Background

SLC27A5 is an isozyme of very long-chain acyl-CoA synthetase (VLCS). It is capable of activating very long-chain fatty-acids containing 24- and 26-carbons. It is expressed in liver and associated with endoplasmic reticulum but not with peroxisomes. Its primary role is in fatty acid elongation or complex lipid synthesis rather than in degradation.

# SLC27A5 Antibody (Center) Blocking Peptide - References

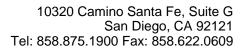
Watkins, P.A., et.al., Prostaglandins Leukot. Essent. Fatty Acids 60 (5-6), 323-328 (1999) Steinberg, S.J., et.al., J. Biol. Chem. 275 (21), 15605-15608 (2000)



procedures.

SLC27A5 Antibody (Center) Blocking Peptide - Protein Information

Name SLC27A5


Synonyms ACSB, ACSVL6, FACVL3, FATP5

#### **Function**

Acyl-CoA synthetase that catalyzes the activation of bile acids via formation of bile acid CoA thioesters which is necessary for their subsequent conjugation with glycine or taurine (PubMed:<a href="http://www.un iprot.org/citations/10749848" target=" blank">10749848</a>, PubMed:<a href="http://www.uniprot.org/ci tations/11980911" target=" blank">11980911</a>). Both primary bile acids (cholic acid and chenodeoxycholic acid) and secondary bile acids (deoxycholic acid and lithocholic acid) are the principal substrates (PubMed: <a hre f="http://www.uniprot.org/citations/107498 48" target=" blank">10749848</a>, PubMed:<a href="http://www.uniprot.org/ci tations/11980911" target="\_blank">11980911</a>). Also exhibits acyl CoA synthetase activity that activates very long-chain fatty acids (VLCFAs) by catalyzing the formation of fatty acyl-CoA (PubMed:<a href="http://ww w.uniprot.org/citations/10479480" target=" blank">10479480</a>). In vitro, also activates 3-alpha,7-alpha,12-alpha-trih vdroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol (PubMed:<a href="http://www.uniprot.org/c itations/11980911" target=" blank">11980911</a>). Exhibits long-chain fatty acids (LCFA) transport activity (PubMed: <a href="http://www.unipr ot.org/citations/20530735" target=" blank">20530735</a>). Plays an important role in hepatic fatty acid uptake and bile acid reconjugation and recycling but not in de novo synthesis of bile acids (By similarity).

### **Cellular Location**

Endoplasmic reticulum membrane; Multi-pass membrane protein. Microsome {ECO:0000250|UniProtKB:Q9ES38}. Cell membrane





{ECO:0000250|UniProtKB:Q4LDG0}; Multi-pass membrane protein

**Tissue Location**Predominantly expressed in liver.

# SLC27A5 Antibody (Center) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides