ABclonal www.abclonal.com

GGCX Rabbit pAb

Catalog No.: A1806

1 Publications

Basic Information

Observed MW

110kDa

Calculated MW

88kDa

Category

Polyclonal Antibody

Applications

WB, ELISA

Cross-Reactivity

Human, Mouse

Background

This gene encodes an integral membrane protein of the rough endoplasmic reticulum that carboxylates glutamate residues of vitamin K-dependent proteins to gamma carboxyl glutamate, a modification that is required for their activity. The vitamin K-dependent protein substrates have a propeptide that binds the enzyme, with carbon dioxide, dioxide, and reduced vitamin K acting as co-substrates. Vitamin K-dependent proteins affect a number of physiologic processes including blood coagulation, prevention of vascular calcification, and inflammation. Allelic variants of this gene have been associated with pseudoxanthoma elasticum-like disorder with associated multiple coagulation factor deficiency. Alternative splicing results in multiple transcript variants.

Recommended Dilutions

WB 1:500 - 1:2000

ELISA

Recommended starting concentration is 1 µg/mL. Please optimize the concentration based on your specific assay requirements.

Immunogen Information

Gene ID Swiss Prot 2677 P38435

Immunogen

Recombinant protein (or fragment). This information is considered to be commercially sensitive.

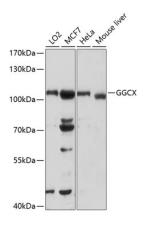
Synonyms

VKCFD1; GGCX

Contact

www.abclonal.com

Product Information


SourceIsotypePurificationRabbitIgGAffinity purification

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.

Validation Data

Western blot analysis of various lysates using GGCX Rabbit pAb (A1806) at 1:1000

dilution.

Secondary antibody: HRP-conjugated Goat anti-Rabbit IgG (H+L) (AS014) at 1:10000

dilution.

Lysates/proteins: 25µg per lane.

Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).

Exposure time: 90s.