ATG4D Rabbit pAb

Catalog No.: A7842

Basic Information

Observed MW

53kDa

Calculated MW

53kDa

Category

Polyclonal Antibody

Applications

WB, ELISA

Cross-Reactivity

Rat

Background

Autophagy is the process by which endogenous proteins and damaged organelles are destroyed intracellularly. Autophagy is postulated to be essential for cell homeostasis and cell remodeling during differentiation, metamorphosis, non-apoptotic cell death, and aging. Reduced levels of autophagy have been described in some malignant tumors, and a role for autophagy in controlling the unregulated cell growth linked to cancer has been proposed. This gene belongs to the autophagy-related protein 4 (Atg4) family of C54 endopeptidases. Members of this family encode proteins that play a role in the biogenesis of autophagosomes, which sequester the cytosol and organelles for degradation by lysosomes. Alternative splicing results in multiple transcript variants.

Recommended Dilutions

WB 1:500 - 1:1000

ELISA

Recommended starting concentration is 1 µg/mL. Please optimize the concentration based on your specific assay requirements.

Immunogen Information

Gene ID84971

Swiss Prot
Q86TL0

Immunogen

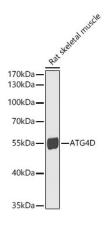
Recombinant protein (or fragment). This information is considered to be commercially sensitive.

Synonyms

APG4D; AUTL4; APG4-D; HsAPG4D; ATG4D

Contact

www.abclonal.com


Product Information

SourceIsotypePurificationRabbitIgGAffinity purification

Storage

Store at -20°C. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.

Validation Data

Western blot analysis of lysates from Rat skeletal muscle using ATG4D Rabbit pAb (A7842) at 1:1000 dilution.

Secondary antibody: HRP-conjugated Goat anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution.

Lysates/proteins: 25 µg per lane.

Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).

Exposure time: 90s.