

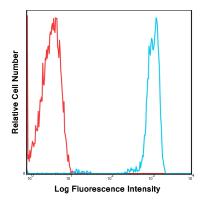
Anti-Human CD45 FITC

Catalog Number: 07111-50

RUO: For Research Use Only. Not for use in diagnostic procedures.

Product Information

Clone: HI30


Format/Conjugate: FITC

Concentration: 5 uL (0.25 ug)/test

Reactivity: Human Laser: Blue (488nm) Peak Emission: 520nm Peak Excitation: 494nm

Filter: 530/30

Brightness (1=dim,5=brightest): 3

Human peripheral blood lymphocytes were stained with FITC HI30 with relevant isotype control in Red.

Isotype: Mouse IgG1, kappa

Formulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2.

Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light.

Applications: FC

Description

The HI130 monoclonal antibody specifically reacts with the 180 kDa, 190 kDa, 205 kDa, and 220 kDa isoforms of the human leukocyte common antigen (LCA) CD45. It is expressed on lymphocytes, granulocytes, monocytes, thymocytes, and eosinophils, but not on mature erythrocytes, platelets, mature erythroid cells of bone marrow, and non-hematopoietic tissues. CD45 is essential for T cell activation and the tyrosine phosphatase activity of its intracellular region is integral for signal transduction.

Preparation & Storage

The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product.

Application Notes

The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. The antibody can be used at less than or equal to 5 μ L per test. A test is the amount of antibody required to stain a cell sample in the final volume of 100 μ L.

References

- $1. Knapp\ W; (1989)\ Leucocyte\ typing\ IV:\ white\ cell\ differentiation\ antigens.\ Oxford\ University\ Press,\ 1989.$
- 2. Ninomiya, M., Abe, A., Katsumi, A., Xu, J., Ito, M., Arai, F., ... Naoe, T. (2006). Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice.; Leukemia,; 21(1), 136-142.

3. Yoshino, N., AMI, Y., TERAO, K., TASHIRO, F., HONDA, M. (2000). Upgrading of flow cytometric analysis for absolute counts, cytokines and other antigenic molecules of cynomolgus monkeys (Macaca fascicularis) by using anti-human cross-reactive antibodies.; Experimental Animals,; 49(2), 97-110.