

Anti-Human CD105 (Endoglin) PE

Catalog Number: 17111-60

RUO: For Research Use Only. Not for use in diagnostic procedures.

Product Information

Clone: SN6

Format/Conjugate: PE

Concentration: 5 uL (1 ug)/test

Reactivity: Human

Laser: Blue (488nm), Yellow/Green (532-561nm)

Peak Emission: 578nm **Peak Excitation:** 496nm

Filter: 585/40

Brightness (1=dim,5=brightest): 5

Viable U937 cells were stained with PE SN6 in purple with relevant isotype control in blue.

Isotype: Mouse IgG1

 $\textbf{Formulation:} \ \ Phosphate-buffered \ aqueous \ solution, \ \leq 0.09\% \ \ Sodium \ azide, \ may \ contain \ carrier \ protein/stabilizer, \ ph7.2.$

Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light.

Applications: FC

Description

The SN6 monoclonal antibody specifically reacts with human CD105 (Endoglin), a 90kDA homodimeric glycoprotein expressed on vascular endothelial cells, activated macrophages, and a subset of bone marrow cells. CD105 is a marker for tumor angiogenesis research by identifying proliferating endothelium. It is also suggested to be involved in embryonic angiogenesis and cellular adhesion.

Preparation & Storage

The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product.

Application Notes

The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. The antibody can be used at less than or equal to 5 μL per test. A test is the amount of antibody required to stain a cell sample in the final volume of 100 μL .

References

- 1.Pierelli, L., Bonanno, G., Rutella, S., Marone, M., Scambia, G., Leone, G. (2001). CD105 (endoglin) expression on hematopoietic stem/progenitor cells.Leukemia lymphoma,;42(6), 1195-1206.
- 2. She, X., Matsuno, F., Harada, N., Tsai, H., Seon, B. K. (2004). Synergy between anti-endoglin (CD105) monoclonal antibodies and TGF- β in suppression of growth of human endothelial cells.;International journal of cancer,;108(2), 251-257.

3. Seon, B. K., Kumar, S. (2002). Press.	CD105 antibody for targeting of	tumor vascular endothelial cel	lls. In;The new angiotherapy;(pp. 4	199-515). Humana