

Data Sheet

 Product Name:
 IPI-3063

 Cat. No.:
 CS-0042285

 CAS No.:
 1425043-73-7

 Molecular Formula:
 C25H25N7O2

Molecular Weight: 455.51 Target: PI3K

Pathway: PI3K/Akt/mTOR

Solubility: DMSO : ≥ 83.33 mg/mL (182.94 mM)

BIOLOGICAL ACTIVITY:

IPI-3063 is a potent and selective PI3K p110δ inhibitor with an IC₅₀ of 2.5 ± 1.2 nM. IC50 & Target: IC50: 2.5±1.2 nM (p110δ), 171 ± 533 nM (p110α), 1508 ± 624 nM (p110β), 2187 ± 1529 nM (p110γ)^[1] In Vitro: IPI-3063 inhibits p110α, p110β, and p110γ with IC₅₀ s of 1171 ± 533 nM, 1508 ± 624 nM, and 2187 ± 1529 nM, respectively. IPI-3063 potently reduces mouse B cell proliferation, survival, and plasmablast differentiation while increasing antibody class switching to IgG1. IPI-3063 is a p110δ selective compound with an IC₅₀=0.1 nM in p110δ-specific cell-based assays and cellular IC₅₀ values for the other class I PI3K isoforms are at least 1,000-fold higher (IC₅₀ =1901±1318 nM for p110α, IC₅₀=102.8±35.7 nM for p110β, IC₅₀=418.8±117.2 nM for p110γ). IPI-3063 is very potent in reducing p-AKT (significant effect at 1 nM). IPI-3063 also reduces p-ERK1/2 with a significant effect at 10 nM. IPI-3063 is very potent, achieving a significant decrease in B cell survival when present at 10 nM^[1].

PROTOCOL (Extracted from published papers and Only for reference)

Kinase Assay: ^[1]Human recombinant PI3K- α , PI3K- β , PI3K- δ , and PI3K- γ are used. Phosphatidylinositol 4,5 bis phosphate (diC8-PtdIns(4,5)P2) is used. PI3K- α , β , and δ are heterodimers consisting of full length p110 α , p110 β , or p110 δ catalytic subunit and the p85 α regulatory subunit. PI3K- γ is a monomer of the p110 γ catalytic subunit. Samples of kinase (10 nM- α , β , and δ ; 20 nM- γ) are incubated with IPI-3063 for 30 min at room temperature in reaction buffer (15 mM HEPES pH 7.4, 20 mM NaCl, 1 mM EGTA, 0.02% Tween 20, 10 mM MgCl₂, 0.2 mg/mL bovine- γ -globulins) followed by addition of ATP/diC8-PtdIns(4,5)P2 mixture to give final concentrations of 3 mM ATP and 500 μM diC8-PtdIns(4,5)P2. Reactions are incubated at room temperature for 2 h, with PI3K activity is assessed. Plates are read on plate reader in luminescence mode^[1].

Cell Assay: ^[1]Peripheral blood mononuclear cells (PBMCs) are first purified from blood by density gradient centrifugation. Human B cells are then purified from PBMCs by negative selection. B-cell purity is increased from 4% to >70% as measured by FACS analysis using anti-CD19 PE conjugated antibody. Purified B cells are seeded at a final concentration of 0.1×10⁶ cells/mL and cultured with 2 μg/mL human CD40L+5 μg/mL anti-human IgM/IgG+100 μg/mL hIL-2+100 μg/mL hIL-21. All B cells are cultured in RPMI 1640 supplemented with 10% (vol/vol) heat-inactivated FCS, 5 mM Hepes, 2 mM L-glutamine, 100 U/mL Penicillin, 100 μg/mL Streptomycin, 50 μM 2-mercaptoethanol. Purified human B cells are pretreated with IPI-3063 (0.1, 1, 10, and 100 nM) for 30 min, then stimulated with human CD40L+anti-human IgM/IgG+human IL-2+human IL-21 for 120 h^[1].

References:

[1]. Chiu H, et al. The Selective Phosphoinoside-3-Kinase p110δ Inhibitor IPI-3063 Potently Suppresses B Cell Survival, Proliferation, and Differentiation. Front Immunol. 2017 Jun 30;8:747.

Page 1 of 2 www.ChemScene.com

5-Pyrimidinecarbonitrile, 4-amino-6-[[(1S)-1-[8-(1,6-dihydro-1-methyl-6-oxo-3-pyridinyl)-1,2-dihydro-2-(1-methylethyl)-1-oxo-3-isoquinolinyl]ethyl]amino]-
SMILES:
N#CC1=C(N[C@H](C2=CC3=C(C(N2C(C)C)=O)C(C(C=C4)=CN(C)C4=O)=CC=C3)C)N=CN=C1N
Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

CAIndexNames:

Page 2 of 2 www.ChemScene.com