

Data Sheet

Product Name: Idelalisib
Cat. No.: CS-0256
CAS No.: 870281-82-6
Molecular Formula: C22H18FN7O

Molecular Weight: 415.42

Target: Autophagy; PI3K

Pathway: Autophagy; PI3K/Akt/mTOR

Solubility: DMSO : \geq 59.7 mg/mL (143.71 mM)

BIOLOGICAL ACTIVITY:

Idelalisib (CAL-101; GS-1101) is a highly selective and orally bioavailable **p110**δ inhibitor with an **IC**₅₀ of 2.5 nM, showing 40- to 300-fold selectivity for p110δ over other PI3K class I enzymes. IC50 & Target: IC50: 2.5 nM (p110δ), 89 nM (p110γ), 565 nM (p110β), 820 nM (p110α)^[1] **In Vitro**: Idelalisib (CAL-101; GS-1101) is a highly selective and potent p110δ inhibitor (EC₅₀=8 nM). Greater selectivity (400- to 4000-fold) is seen against related kinases C2β, hVPS34, DNA-PK, and mTOR, whereas no activity is observed against a panel of 402 diverse kinases at 10 μM. CAL-101 reduces PDGF-induced pAkt by only 25% at 10 μM. Idelalisib (CAL-101) inhibits LPA-induced pAkt with an EC₅₀ of 1.9 μM. Idelalisib (CAL-101) blocks FcεRI p110δ-mediated CD63 expression with an EC₅₀ of 8 nM, whereas formyl-methionyl-leucyl-phenylalanine activation of p110γ is inhibited with an EC₅₀ of 3 μM. Thus, in cell-based assays, CAL-101 has 240- to 2500-fold selectivity for p110δ over the other class I PI3K isoforms^[1]. CAL-101Idelalisib (CAL-101)-induced apoptosis of chronic lymphocytic leukemia (CLL) cells is significant compare with vehicle treatment alone (P<0.001). Idelalisib (CAL-101) induces selective cytotoxicity in CLL cells independent of IgVH mutational status or interphase cytogenetics^[2]. **In Vivo**: A significant reduction is observed in the CD11b⁺Ly6G⁺ neutrophils from brain homogenates of bothp110δ^{D910A/D910A} mice and Idelalisib (CAL-101) (40 mg/kg, i.v.) post-treated mice^[3].

PROTOCOL (Extracted from published papers and Only for reference)

Cell Assay: Idelalisib (CAL-101) is dissolved in DMSO and stored, and then diluted with appropriate media before use^{[2],[2]}MTT assays are performed to determine cytotoxicity. Briefly, 1×10^5 cells (CLL B cells or healthy volunteer T cells or NK cells) are incubated for 48 hours with different concentrations of Idelalisib (CAL-101) (0.1 μ M, 1 μ M, 5 μ M, 10 μ M), 25 μ M LY294002, or vehicle control. MTT reagent is then added. DMSO is added, and absorbance is measured by spectrophotometry at 540 nm in a Labsystems plate reader. Cell viability is also measured at various time points with the use of annexin/PI flow cytometry. Data are analyzed with Expo-ADC32 software package. At least 10,000 cells are counted for each sample. Results are expressed as the percentage of total positive cells over untreated control. Experiments examining caspase-dependent apoptosis included the addition of 100 μ M Z-VAD. Experiments examining survival signals include the addition of 1 μ g/mL CD40L, 800 U/mL IL-4, 50 ng/mL BAFF, 20 ng/mL TNF- α , or coculturing on fibronectin or stromal (HS-5 cell line) coated plates. Stromal coculture is done by plating a 75-cm2 flask (80%-100% confluent) per 6-well plate 24 hours before the addition of CLL cells^[2]. **Animal Administration**: Idelalisib (CAL-101) is prepared in DMSO and then diluted^{[3],[3]}Mice^[3]

For Idelalisib (CAL-101) treatment, wild-type C57BL/6 mice are administered either 40 mg/kg Idelalisib (CAL-101) or vehicle DMSO, by $25~\mu L$ infusion into the femoral vein, 15 min before I/R (pre-treatment), or 3 and 6 h after initiation of reperfusion (post-treatment). Controls and animals treated with Idelalisib (CAL-101) underwent cerebral blood flow (CBF) measurements using a laser Doppler perfusion monitor. The CBF measurements obtained immediately before and after MCAO and again at 3 h after reperfusion showed an \sim 90-95% reduction in the blood flow to the MCAO infarct region, which does not differ between groups.

Page 1 of 2 www.ChemScene.com

References:

- [1]. Lannutti BJ, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 2011, 117(2), 591-594.
- [2]. Herman SE, et al. Phosphatidylinositol 3-kinase- δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood, 2010, 116(12), 2078-2088.
- [3]. Low PC, et al. PI3K8 inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nat Commun. 2014 Mar 14;5:3450.
- [4]. Cooney J, et al. Synergistic targeting of the regulatory and catalytic subunits of PI3K δ in mature B cell malignancies. Clin Cancer Res. 2018 Mar 1;24(5):1103-1113.

CAIndexNames:

4(3H)-Quinazolinone, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl]-

SMILES:

O=C1N(C2=CC=CC=C2)C([C@@H](NC3=C4N=CNC4=NC=N3)CC)=NC5=C1C(F)=CC=C5

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.ChemScene.com