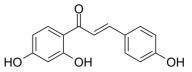


Data Sheet

Product Name: Isoliquiritigenin


Cat. No.: CS-1745
CAS No.: 961-29-5
Molecular Formula: C15H12O4
Molecular Weight: 256.25

Target: Aldose Reductase; Apoptosis; Autophagy

Pathway: Apoptosis; Autophagy; Metabolic Enzyme/Protease

Solubility: DMSO : ≥ 100 mg/mL (390.24 mM); Ethanol : 100 mg/mL

(390.24 mM; Need ultrasonic)

BIOLOGICAL ACTIVITY:

Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza glabra, which inhibits **aldose reductase** with an IC_{50} of 320 nM. IC50 & Target: IC50: 320 nM (Aldose reductase) **In Vitro**: Isoliquiritigenin may prevent diabetic complications through inhibiting rat lens aldose reductase with an IC_{50} of 320 nM and sorbitol accumulation in human red blood cells with an IC_{50} of 2.0 μ M^[1]. Isoliquiritigenin (100 μ M) markedly inhibits the hypoxia-induced prolonged TPS and TR90 of cardiomyocytes. Isoliquiritigenin significantly triggers AMPK Thr172 phosphorylation as compared with vehicle group. Isoliquiritigenin treatment also induces extracellular signal-regulated kinase (ERK) signaling pathway in the cardiomyocytes. Isoliquiritigenin treatment significantly decreases the intracellular ROS levels of isolated cardiomyocytes during hypoxia/reoxygenation^[3]. Isoliquiritigenin not only downregulates IL-6 expression but also significantly decreases levels of phosphorylated ERK and STAT3 and can inhibit phosphorylation levels of ERK and STAT3 induced by recombinant human IL-6, which are critical signaling proteins in IL-6 signaling regulation networks^[4]. **In Vivo**: Isoliquiritigenin shows concentration-dependent inhibition of the tonic contraction of mouse jejunum induced by various types of stimulants such as CCh (1 mM), KCl (60 mM) and BaCl₂ (0.3 mM) with IC₅₀ values of 4.96±1.97 mM, 4.03±1.34 mM and 3.70±0.58 mM, respectively^[2]. Isoliquiritigenin exhibits significant anti-tumor activity in MM xenograft models and synergistically enhances the anti-myeloma activity of adriamycin^[4].

References:

- [1]. Aida K, et al. Isoliquiritigenin: a new aldose reductase inhibitor from glycyrrhizae radix. Planta Med. 1990 Jun;56(3):254-8.
- [2]. Sato Y, et al. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biol Pharm Bull. 2007 Jan;30(1):145-9.
- [3]. Zhang X. Natural antioxidant-isoliquiritigenin ameliorates contractile dysfunction of hypoxic cardiomyocytes via AMPK signaling pathway. Mediators Inflamm. 2013;2013:390890.
- [4]. Chen X, et al. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J Mol Med (Berl). 2012 Nov;90(11):1311-9.

CAIndexNames:

2-Propen-1-one, 1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-,(2E)-

SMILES:

O = C(C1 = CC = C(O)C = C1O)/C = C/C2 = CC = C(O)C = C2

Page 1 of 2 www.ChemScene.com

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.ChemScene.com