

Bioactive Molecules, Building Blocks, Intermediates

www.ChemScene.com

OF-

Product Name:	Urolithin A	
Cat. No.:	CS-6305	^
CAS No.:	1143-70-0	
Molecular Formula:	C13H8O4	
Molecular Weight:	228.20	
Target:	Apoptosis; Autophagy; DNA/RNA Synthesis; Drug Metabolite; Reactive Oxygen Species	HO
Pathway:	Apoptosis; Autophagy; Cell Cycle/DNA Damage; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-κB	0
Solubility:	DMSO : 30 mg/mL (131.46 mM; Need ultrasonic); H2O : < 0.1 mg/mL (insoluble)	
	-	

Data Sheet

BIOLOGICAL ACTIVITY:

Urolithin A, a gut-microbial metabolite of ellagic acid, exerts anti-inflammatory, antiproliferative, and antioxidant properties. Urolithin A induces **autophagy** and **apoptosis**, suppresses cell cycle progression, and inhibits **DNA synthesis**^{[1][2]}. **In Vitro:** Micromolar urolithin A concentrations induces both autophagy and apoptosis. Urolithin A suppresses cell cycle progression and inhibited DNA synthesis in human sw620 colorectal cancer cells^[2].

Urolithin A shows antiproliferative effects and inhibits T24 and Caco-2 cell growth with IC₅₀s of 43.9 and 49 μ M, respectively^[3]. Urolithin A exerts a dose- and time-dependent significant arrest at G2/M and S phases after treatments with 50 and 100 μ M at 24 and 48 h compared to control cells. It induces cell apoptosis with 50 and 100 μ M ^[4].

Urolithin A shows potent antiproliferative activity on HepG2 cells. When cell death is induced by Urolithin A, the expression of β catenin, c-Myc and Cyclin D1 are decreased and TCF/LEF transcriptional activation is notably down-regulated. Urolithin A also increases protein expression of p53, p38-MAPK and caspase-3, but suppresses expression of NF- κ B p65 and other inflammatory mediators^[5]. **In Vivo:** The volume of paw edema is reduced at 1 h after oral administration of urolithin A. In addition, plasma in treated mice exhibited significant oxygen radical antioxidant capacity (ORAC) scores with high plasma levels of the unconjugated form at 1 h after oral administration of urolithin A^[6].

PROTOCOL (Extracted from published papers and Only for reference)

Cell Assay: ^[2]Human colon cancer cells HT-29 are treated for 24 and 48 h at 100 and 50 μ M of Urolithin A and Iso Urolithin A aglycones and their glucuronide conjugates. Cell viability and proliferation are measured using a TC10 automated cell counter with the addition of Trypan blue for viability determination. IC₅₀ values are determined by MTT assay^[2]. **Animal Administration**: ^[4]Mice: Paw edema is induced in the right hind paw of ICR mice by the subcutaneous injection of 1% λ -carrageenan in pysiological saline (50 μ L). The inflammation level is quantified by the volume of paw edema. Urolithin A dissolved in 0.5% carboxymethylcellulose suspension is orally administered to the mice at 1 or 6 h before carrageenan injection. The anti-inflammatory effects of urolithin A on carrageenan-induced edema in mice are analyzed^[4].

References:

[1]. Gong Z, et al. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice.

[2]. Zhao W, et al. Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620colorectal cancer cells. Mol Carcinog. 2018 Feb;57(2):193-200.

[3]. Qiu Z, et al. In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells. Food

Chem Toxicol. 2013 Sep;59:428-37.

[4]. González-Sarrías A, et al. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. Eur J Nutr. 2017 Mar; 56(2):831-841.

[5]. Wang Y, et al. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro. 2015 Aug;29(5):1107-15.

[6]. Ishimoto H, et al. In vivo anti-inflammatory and antioxidant properties of ellagitannin metabolite urolithin A. Bioorg Med Chem Lett. 2011 Oct 1;21(19):5901-4.

CAIndexNames:

6H-Dibenzo[b,d]pyran-6-one, 3,8-dihydroxy-

SMILES:

O=C1C2=CC(O)=CC=C2C3=CC=C(O)C=C3O1

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA