

MYO10 Antibody, Biotin conjugated

Product Code CSB-PA884628LD01HU Storage Upon receipt, store at -20°C or -80°C. Avoid repeated freeze. Uniprot No. Q9HD67 Immunogen Recombinant Human Unconventional myosin-X protein (1-97AA) Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of fillopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filiopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias		
Uniprot No. Q9HD67 Immunogen Recombinant Human Unconventional myosin-X protein (1-97AA) Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Product Code	CSB-PA884628LD01HU
Immunogen Recombinant Human Unconventional myosin-X protein (1-97AA) Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Storage	Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Uniprot No.	Q9HD67
Species Reactivity Human Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Immunogen	Recombinant Human Unconventional myosin-X protein (1-97AA)
Tested Applications ELISA Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Raised In	Rabbit
Relevance Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Species Reactivity	Human
myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Form Liquid Conjugate Biotin Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Tested Applications	ELISA
ConjugateBiotinStorage BufferPreservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4Purification Method>95%, Protein G purifiedIsotypeIgGClonalityPolyclonalAliasUnconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799SpeciesHomo sapiens (Human)Research AreaSignal Transduction	Relevance	myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in
Storage Buffer Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Form	Liquid
Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Purification Method >95%, Protein G purified Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Conjugate	Biotin
Isotype IgG Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Storage Buffer	
Clonality Polyclonal Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Purification Method	>95%, Protein G purified
Alias Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799 Species Homo sapiens (Human) Research Area Signal Transduction	Isotype	IgG
Species Homo sapiens (Human) Research Area Signal Transduction	Clonality	Polyclonal
Research Area Signal Transduction	Alias	Unconventional myosin-X (Unconventional myosin-10), MYO10, KIAA0799
	Species	Homo sapiens (Human)
Target Names MYO10	Research Area	Signal Transduction
	Target Names	MYO10