Muscle Actin >95% pure Rabbit Skeletal Muscle Cat. # AKL95

white lyophilized powder.

Storage and Reconstitution

Material

Upon arrival store at 4°C (desiccated) See datasheet for storage after reconstitution

Actin protein has been purified from rabbit skeletal muscle by the

method of Pardee and Spudich (1). AKL95 actin is between 95-

97% pure. Possible contaminants may include α-actinin (100 kDa).

actin doublets (86 kDa) or Cap Z (33 kDa). Muscle actin has an

approximate molecular weight of 43 kDa. AKL95 is supplied as a

Briefly centrifuge to collect the product at the bottom of the tube.

The lyophilized protein when stored desiccated to <10% humidity

at 4°C is stable for 6 months. The protein should be reconstituted

to 10 mg/ml with deionized water. Reconstitution to 10 mg/ml is

best accomplished by occasional pipetting on ice or at 4°C for 10-

15 minutes, and will result in an opaque solution. Do not heat the actin during reconstitution. After reconstitution the actin will be in

the following buffer: 5 mM Tris-HCl pH 8.0, 0.2 mM CaCl₂, 0.2 mM

ATP, 5% (w/v) sucrose, and 1% (w/v) dextran. The concentrated

protein should then be aliquoted into experiment sized amounts,

snap frozen in liquid nitrogen, and stored at -70°C. The protein is

stable for 6 months if stored at -70°C. For working concentrations,

further dilution of the protein should be made with General Actin

Buffer (Cat. # BSA01) supplemented with 0.2 mM ATP (Cat. #

BSA04) and 0.5 mM DTT. Muscle actin is a labile protein and

should be handled with care. Avoid repeated freeze-thaw cycles.

Biological Activity Assav

The biological activity of muscle actin can be determined by its ability to efficiently polymerize into filaments in vitro and separate from unpolymerized components in a spin down assay. Stringent quality control ensures that >80% of the muscle actin can be polymerized in this assay.

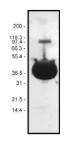
Reagents

- 1. Muscle Actin (Cat. # AKL95)
- General Actin Buffer (5 mM Tris-HCl pH 8.0, 0.2 mM CaCl₂) (Cat. # BSA01)
- 3. 10x Polymerization Buffer (500 mM KCl, 20 mM MgCl₂, 10 mM ATP) (Cat. # BSA02)
- 4. ATP, 100 mM solution (Cat. # BSA04)
- Precision RedTM Protein Assay Reagent (Cat. # ADV02)

Equipment

- 1. Microfuge at 4°C
- Beckman Airfuge and Ultra-Clear[™] centrifuge tubes (Cat. # 344718), Beckman ultra-centrifuge and SW 55 Ti rotor with Ultra-Clear[™] centrifuge tubes (Cat. # 344718) and adapters (Cat. # 356860), or other ultracentrifuge capable of centrifuging 200 µl at 100,000 x g.
- Spectrophotometer capable of measuring absorbance at 600 nm.

Purity


Protein purity is determined by scanning densitometry of Coomassie Blue stained protein on a 12% polyacrylamide gel. Muscle actin was found to be >95% pure (see Figure 1).

Method

- Dilute muscle actin to 0.4 mg/ml in General Actin Buffer supplemented with 0.2 mM ATP.
- 2. Incubate on ice for 60 min to depolymerize actin oligomers that form during storage.
- Centrifuge the protein in a 4°C microfuge at 14k rpm for 15 min.
- Transfer the supernatant to a new microfuge tube and determine the total protein concentration with the Precision Red[™]
 Protein Assay Reagent.
- 5. Aliquot 200 μl of the actin solution to an ultracentrifuge tube.
- Add 20 μI (1/10th the volume) of 10x Polymerization Buffer to each airfuge tube and mix well.
- 7. Incubate at room temperature for 1 h.
- Centrifuge the tubes at 100,000 x g for 1 h to pellet the polymerized actin.
- Remove the top 90% of the supernatant of each tube to a clean microfuge tube.
- 10. Determine the concentration of the protein in the supernatant (unpolymerized monomer actin) with the Precision Red™ Protein Assay Reagent. This protein concentration is used to determine the efficiency with which actin polymerized and pelleted during centrifugation.

Figure 1. Muscle Actin Protein Purity Determination.

A 100 μg sample of muscle actin (molecular weight approx. 43 kDa) was separated by electrophoresis in a 12% SDS-PAGE system. The protein was stained with Coomassie Blue. Protein quantitation was determined with the Precision RedTM Protein Assay Reagent (Cat. # ADV02). Mark12 molecular weight markers are from Invitrogen.

Advice for Working with Muscle Actin

- Monomer actin is unstable in the absence of ATP, a divalent cation and dithiothreitol (DTT).
- 2. Monomer actin will polymerize at >2 mM K+, Na+, and in > $0.05 \text{ mM Mg}^{2^{+}}$.
- 3) Monomer actin is unstable below pH 6.5, or above pH 8.5.
- 4. Polymerized actin is more resilient to adverse conditions than monomeric actin. Therefore, actin is preferably stored in the polymerized form at 4oC for several weeks. If filaments are to be stored for longer than 24 h, addition of an antibacterial agent such as 0.05% sodium azide or 100 μg/ ml ampicillin and 10 μg/ml chloramphenicol is recommended.
- Snap freeze actin in liquid nitrogen at 10 mg/ml to maintain high biological activity.

Product Uses

- Identification and characterization of muscle actin binding proteins
- In vitro actin polymerization studies
- Antibody standard for Western blot analysis

References

 Pardee J.D., and Spudich, J.A. 1982. Methods in Cell Biol. 24:271-288.

Product Citations/Related Products

For the latest citations and related products please visit www.cytoskeleton.com.