

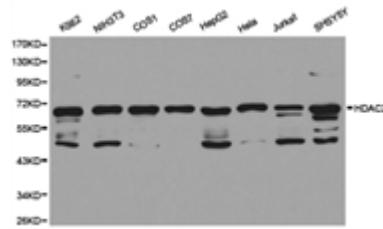
HDAC2 Polyclonal Antibody

E92084

Catalog Number: E92084**Amount:** 100ul

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7). HDAC1 and HDAC2 are highly homologous and are involved in histone deacetylation, chromatin remodeling and transcriptional repression (8-10). Both proteins are found together in numerous complexes including the nucleosome remodeling and deacetylation complex (NuRD), MeCP1, and the mSin3A corepressor complex.

Species: Rabbit**Isotype:** IgG


Storage/Stability: Store at -20oC or -80oC. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Synonyms: RPD3; YAF1;**Immunogen:** A synthetic peptide of human HDAC2**Purification:** Affinity purification**Reactivity:** H M R**Applications:** WB IHC**Molecular Weight:** 55kDa**Swiss-Prot No.:** Q92769**Gene ID:** 3066

References: 1. Marmorstein, R. (2001) *Cell Mol Life Sci* 58, 693-703. 2. Gregory, P.D. et al. (2001) *Exp Cell Res* 265, 195-202. 3. Liu, Y. et al. (2000) *Mol Cell Biol* 20, 5540-53. 4. Cress, W.D. and Seto, E. (2000) *J Cell Physiol* 184, 1-16. 5. Gray, S.G. and Ekström, T.J. (2001) *Exp Cell Res* 262, 75-83. 6. Thiagalingam, S. et al. (2003) *Ann. N.Y. Acad. Sci.* 983, 84-100. 7. Vigushin, D.M. and Coombes, R.C. (2004) *Curr. Cancer Drug Targets* 4, 205-218. 8. Zhang, Y. et al. (1999) *Genes Dev* 13, 1924-35. 9. Ng, H.H. et al. (1999) *Nat Genet* 23, 58-61. 10. Zhang, Y. et al. (1997) *Cell* 89, 357-64.

WB 1:500 - 1:2000

IHC 1:50- 1:200

Western blot analysis of extracts of various cell lines,
using HDAC2 antibody.