Immunotag™ Histone H2A.X (Phospho Thr120) Polyclonal Antibody | Antibody Specification | | |-------------------------|--| | Catalog No. | ITM3310 | | Product
Description | Immunotag™ Histone H2A.X (Phospho Thr120) Polyclonal Antibody | | Size | 50 μg, 100 μg | | Conjugation | HRP, Biotin, FITC, Alexa Fluor® 350, Alexa Fluor® 405, Alexa Fluor® 488, Alexa Fluor® 555, Alexa Fluor® 594, Alexa Fluor® 647 | | IMPORTANT
NOTE | This product is custom manufactured with a lead time of 3-4 weeks. Once in production, this item cannot be cancelled from an order and is not eligible for return. | | Target Protein | Histone H2A.X (Thr120) | | Clonality | Polyclonal | | Storage/Stability | -20°C/1 year | | Application | WB | | Recommended
Dilution | WB: 1:1000-2000 | | Concentration | 1 mg/ml | | Reactive
Species | Human,Mouse,Rat | | Host Species | Rabbit | | Immunogen | Synthetic Peptide of Histone H2A.X (Phospho Thr120) | | Specificity | The antibody detects endogenous Histone H2A.X (Phospho Thr120) protein. | | Purification | The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using specific immunogen | | Form | PBS, pH 7.4, containing 0.02% sodium azide as Preservative and 50% Glycerol. | | Gene Name | H2AFX | | Accession No. | P16104 P27661 | | Alternate Names | H2AFX; H2AX; Histone H2A.x; H2a/x | | Antibody Specification | | |-----------------------------|--| | Description | H2A histone family member X(H2AFX) Homo sapiens Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene encodes a replication-independent histone that is a member of the histone H2A family, and generates two transcripts through the use of the conserved stem-loop termination motif, and the polyA addition motif. [provided by RefSeq, Oct 2015], | | Cell Pathway/
Category | Systemic lupus erythematosus, | | Protein
Expression | Lung,Placenta, | | Subcellular
Localization | chromosome, telomeric region,nucleosome,nuclear chromatin,condensed nuclear chromosome,male germ cell nucleus,XY body,nucleus,nucleoplasm,replication fork,site of double-strand break,extracellular exosome, | ## **Antibody Specification** family, function: Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpointmediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by Cterminal phosphorylation., PTM: Monoubiquitination of Lys-120 (H2AXK119ub) by RING1 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Monoubiquitination and ionizing radiation-induced 'Lys-63'-linked ubiquitination are distinct events.,PTM:Phosphorylated on Ser-140 (to form gamma-H2AFX or H2AX139ph) in response to DNA double strand breaks (DSBs) generated by exogenous genotoxic agents and by stalled replication forks, and may also occur during meiotic recombination events and immunoglobulin class switching in lymphocytes. Phosphorylation can extend up to several thousand nucleosomes from the actual site of the DSB and may mark the surrounding chromatin for recruitment of proteins required for DNA damage signaling and repair. Widespread phosphorylation may also serve to amplify the damage signal or aid repair of persistent lesions. Phosphorylation of Ser-140 (H2AX139ph) in response to ionizing radiation is mediated by both ATM and PRKDC while defects in DNA replication induce Ser-140 phosphorylation (H2AX139ph) subsequent to activation of ATR and PRKDC. Dephosphorylation of Ser-140 by PP2A is required for DNA DSB repair. In meiosis, Ser-140 phosphorylation (H2AX139ph) may occur at synaptonemal complexes during leptotene as an ATM-dependent response to the formation of programmed DSBs by SPO11. Ser-140 phosphorylation (H2AX139ph) may subsequently occurs at unsynapsed regions of both autosomes and the XY bivalent during zygotene, downstream of ATR and BRCA1 activation. Ser-140 phosphorylation (H2AX139ph) may also be required for transcriptional repression of unsynapsed chromatin and meiotic sex chromosome inactivation (MSCI), whereby the X and Y chromosomes condense in pachytene to form the heterochromatic XY-body. During immunoglobulin class switch recombination in lymphocytes, Ser-140 phosphorylation (H2AX139ph) may occur at sites of DNA-recombination subsequent to activation of the activation-induced cytidine deaminase AICDA. Phosphorylation at Tyr-143 (H2AXY142ph) by BAZ1B/WSTF determines the relative recruitment of either DNA repair or pro-apoptotic factors. Phosphorylation at Tyr-143 (H2AXY142ph) favors the recruitment of APBB1/FE65 and pro-apoptosis factors such as MAPK8/JNK1, triggering apoptosis. In contrast, dephosphorylation of Tyr-143 by EYA proteins (EYA1, EYA2, EYA3 or EYA4) favors the recruitment of MDC1-containing DNA repair complexes to the tail of phosphorylated Ser-140 (H2AX139ph)., similarity: Belongs to the histone H2A family., subunit: The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. Interacts with numerous proteins required for DNA damage signaling and repair when phosphorylated on Ser-140. These include MDC1, TP53BP1, BRCA1 and the MRN complex, composed of MRE11A, RAD50, and NBN. Interaction with the MRN complex is mediated at least in part by NBN. Also interacts with DHX9/NDHII when phosphorylated on Ser-140., developmental stage:Synthesized in G1 as well as in S-phase.,domain:The [ST]-Q motif constitutes a recognition sequence for kinases from the PI3/PI4-kinase **Protein Function** ## **Antibody Specification** Usage For Research Use Only! Not for diagnostic or therapeutic procedures. www.gbiosciences.com © 2018 Geno Technology Inc., USA. All Rights Reserved.