Immunotag™ PMS2 Polyclonal Antibody | Antibody Specification | | |-------------------------|--| | Catalog No. | ITT3804 | | Product
Description | Immunotag™ PMS2 Polyclonal Antibody | | Size | 50 μg, 100 μg | | Conjugation | HRP, Biotin, FITC, Alexa Fluor® 350, Alexa Fluor® 405, Alexa Fluor® 488, Alexa Fluor® 555, Alexa Fluor® 594, Alexa Fluor® 647 | | IMPORTANT
NOTE | This product is custom manufactured with a lead time of 3-4 weeks. Once in production, this item cannot be cancelled from an order and is not eligible for return. | | Target Protein | PMS2 | | Clonality | Polyclonal | | Storage/Stability | -20°C/1 year | | Application | WB,IHC-p,IF,ELISA | | Recommended
Dilution | Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/10000. Not yet tested in other applications. | | Concentration | 1 mg/ml | | Reactive
Species | Human | | Host Species | Rabbit | | Immunogen | The antiserum was produced against synthesized peptide derived from human PMS2. AA range:461-510 | | Specificity | PMS2 Polyclonal Antibody detects endogenous levels of PMS2 protein. | | Purification | The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen | | Form | Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. | | Gene Name | PMS2 | | Accession No. | P54278 P54279 | | Alternate Names | PMS2; PMSL2; Mismatch repair endonuclease PMS2; DNA mismatch repair protein PMS2; PMS1 protein homolog 2 | | Antibody Specification | | |-----------------------------|--| | Description | PMS1 homolog 2, mismatch repair system component(PMS2) Homo sapiens The protein encoded by this gene is a key component of the mismatch repair system that functions to correct DNA mismatches and small insertions and deletions that can occur during DNA replication and homologous recombination. This protein forms heterodimers with the gene product of the mutL homolog 1 (MLH1) gene to form the MutL-alpha heterodimer. The MutL-alpha heterodimer possesses an endonucleolytic activity that is activated following recognition of mismatches and insertion/deletion loops by the MutS-alpha and MutS-beta heterodimers, and is necessary for removal of the mismatched DNA. There is a DQHA(X)2E(X)4E motif found at the C-terminus of the protein encoded by this gene that forms part of the active site of the nuclease. Mutations in this gene have been associated with hereditary nonpolyposis colorectal cancer (HNPCC; also known as Lynch syndrome) and Turcot syndrome | | Cell Pathway/
Category | Mismatch repair, | | Protein
Expression | Amygdala,Brain,Endometrial tumor,Epithelium,Human endometri | | Subcellular
Localization | nucleus,nucleoplasm,cytoplasm,microtubule cytoskeleton,mismatch repair complex,MutLalpha complex, | ## **Antibody Specification** [MIM:276300]; also known as Turcot syndrome and brain tumor-polyposis syndrome 1 (BTPS1). MMRCS is an autosomal dominant disorder characterized by malignant tumors of the brain associated with multiple colorectal adenomas. Skin features include sebaceous cysts, hyperpigmented and cafe au lait spots., disease: Defects in PMS2 are the cause of hereditary non-polyposis colorectal cancer type 4 (HNPCC4) [MIM:600259]. Mutations in more than one gene locus can be involved alone or in combination in the production of the HNPCC phenotype (also called Lynch syndrome). Most families with clinically recognized HNPCC have mutations in either MLH1 or MSH2 genes. HNPCC is an autosomal, dominantly inherited disease associated with marked increase in cancer susceptibility. It is characterized by a familial predisposition to early onset colorectal carcinoma (CRC) and extra-colonic cancers of the gastrointestinal, urological and female reproductive tracts. HNPCC is reported to be the most common form of inherited colorectal cancer in the Western world, and accounts for 15% of all colon cancers. Cancers in HNPCC originate within benign neoplastic polyps termed adenomas. Clinically, HNPCC is often divided into two subgroups. Type I: hereditary predisposition to colorectal cancer, a young age of onset, and carcinoma observed in the proximal colon. Type II: patients have an increased risk for cancers in certain tissues such as the uterus, ovary, breast, stomach, small intestine, skin, and larynx in addition to the colon. Diagnosis of classical HNPCC is based on the Amsterdam criteria: 3 or more relatives affected by colorectal cancer, one a first degree relative of the other two; 2 or more generation affected; 1 or more colorectal cancers presenting before 50 years of age; exclusion of hereditary polyposis syndromes. The term "suspected HNPCC" or "incomplete HNPCC" can be used to describe families who do not or only partially fulfill the Amsterdam criteria, but in whom a genetic basis for colon cancer is strongly suspected., function: Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MLH1 to form MutL alpha. DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH6) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MulL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages., similarity: Belongs to the DNA mismatch repair mutL/hexB family., subunit: Heterodimer of PMS2 and MLH1 (MutL alpha). Forms a ternary complex with MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH3). Part of the BRCA1-associated disease: Defects in PMS2 are a cause of mismatch repair cancer syndrome (MMRCS) Protein Function Usage For Research Use Only! Not for diagnostic or therapeutic procedures. genome surveillance complex (BASC), which contains BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2 and the RAD50-MRE11-NBS1 protein complex. This association could be a dynamic process changing throughout the cell cycle and within subnuclear domains.,