Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer Protein

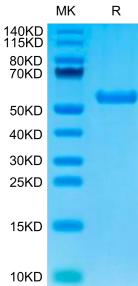
Description	
Source	Recombinant Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer Protein is expressed from HEK293 with His tag and Avi tag at the C-Terminus.
	It contains Gly25-Thr305(HLA-A*02:01), Ile21-Met119(B2M) and FMNKFIYEI peptide.
Accession	A0A140T913(HLA-A*02:01)&P61769(B2M)&FMNKFIYEI
Molecular Weight	The protein has a predicted MW of 50.6 kDa. Due to glycosylation, the protein migrates to 53-63 kDa based on Bis-Tris PAGE result.
Endotoxin	Less than 1 EU per μg by the LAL method.
Purity	> 95% as determined by Bis-Tris PAGE
	> 95% as determined by HPLC
Formulation and	Storage
Formulation	Lyophilized from 0.22µm filtered solution in PBS (pH 7.4). Normally 8% trehalose is added as protectant before lyophilization.
Reconstitution	Dissolve the lyophilized protein in distilled water. Please refer to the Certificate of Analysis for detailed

Background

Storage

Reconstitution

instructions.

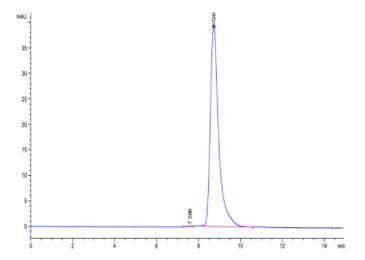

Alpha-fetoprotein (AFP), a specific liver cancer marker, T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 /AFP while sparing cells from multiple tissue types that were negative for either expressed proteins.CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response.

-20 to -80°C for 12 months as supplied from date of receipt.-80°C for 3 months after reconstitution.Recommend

to aliquot the protein into smaller quantities for optimal storage. Please minimize freeze-thaw cycles.

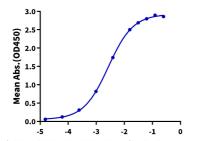
Assay Data

Bis-Tris PAGE



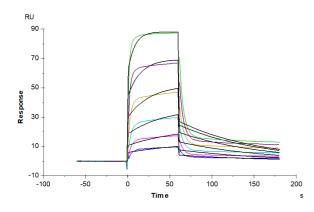
SEC-HPLC

Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer on Bis-Tris PAGE under reduced condition. The purity is greater than


Assay Data

The purity of Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer is greater than 95% as determined by SEC-HPLC.

ELISA Data


Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer, His Tag ELISA 0.1µg Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer, His Tag Per Well

Log Anti-HLA-A*02:01&B2M&AFP Antibody, hFc Tag Conc.(μg/ml)

Immobilized Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer, His Tag at 1 μ g/ml (100 μ l/well) on the streptavidin precoated plate (5 μ g/ml). Dose response curve for Anti-HLA-A*02:01&B2M&AFP (FMNKFIYEI) Antibody, hFc Tag with the EC50 of 2.7ng/ml determined by ELISA (QC Test).

SPR Data

Biotinylated Human HLA-A*02:01&B2M&AFP (FMNKFIYEI) Monomer, His Tag captured on CM5 Chip via Anti-His Antibody can bind HLA-A*02:01&B2M&AFP TCR with an affinity constant of 0.14 μ M as determined in SPR assay (Biacore T200).