NKMAXBIO We support you, we believe in your research

Recombinant human NQO2 protein

Catalog Number: ATGP0522

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-231aa

UniProt No.

P16083

NCBI Accession No.

AAH06096

Alternative Names

N-ribosyldihydronicotinamide:quinone reductase 2, NMOR2, NAD(P)H menadione oxidoreductase 2, Dioxininducible, NAD(P)H quinone dehydrogenase 2, Quinone reductase 2, QR2, DHQV, DIA6, NRH:quinone oxidoreductase 2

PRODUCT SPECIFICATION

Molecular Weight

28.1 kDa (251aa) confirmed by MALDI-TOF

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 1mM DTT

Purity

> 95% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

NQO2 is a member of the NAD (P) H dehydrogenase (quinone). The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis. It is flavoproteins that catalyze the metabolic detoxification of quinones and their

NKMAXBio We support you, we believe in your research

Recombinant human NQO2 protein

Catalog Number: ATGP0522

derivatives to hydroquinones. This detoxification process protects cells against quinone-induced oxidative stress, cytotoxicity and mutagenicity. Recombinant human NQO2 protein was expressed in E. coli and purified by using conventional chromatography techniques.

Amino acid Sequence

<MGSSHHHHHH SSGLVPRGSH> MAGKKVLIVY AHQEPKSFNG SLKNVAVDEL SRQGCTVTVS DLYAMNFEPR ATDKDITGTL SNPEVFNYGV ETHEAYKQRS LASDITDEQK KVREADLVIF QFPLYWFSVP AILKGWMDRV LCQGFAFDIP GFYDSGLLQG KLALLSVTTG GTAEMYTKTG VNGDSRYFLW PLQHGTLHFC GFKVLAPQIS FAPEIASEEE RKGMVAAWSQ RLQTIWKEEP IPCTAHWHFG Q

General References

Wu K., et al. (1997) Arch Biochem Biophys. 347(2):221-8. Jaiswal AK., et al. (1994) J Biol Chem. 269(20):14502-8.

DATA

SDS-PAGE

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

