NKMAXBIO We support you, we believe in your research

Recombinant human UBL4A protein

Catalog Number: ATGP1418

PRODUCT INFORMATION

Expression system

E.coli

Domain

1-157aa

UniProt No.

P11441

NCBI Accession No.

NP 055050

Alternative Names

Ubiquitin like 4A, Ubiquitin-like 4, UBL4, Ubiquitin-like protein GDX, DXS254E, GET5, MDY2, TMA24

PRODUCT SPECIFICATION

Molecular Weight

18.8 kDa (165aa) confirmed by MALDI-TOF

Concentration

1mg/ml (determined by Bradford assay)

Formulation

Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 1mM DTT, 10% glycerol, 100mM NaCl

Purity

> 95% by SDS-PAGE

Tag

His-Tag

Application

SDS-PAGE

Storage Condition

Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles.

BACKGROUND

Description

uBL4A, also known as GDX, contains 1 ubiquitin-like domain. Post-translational modification by ubiquitin and ubiquitin-related proteins plays critical roles in protein degradation and in regulation of essential cellular processes. In mammals, transcription grinds to a halt during late spermiogenesis due to compaction of the spermatid genome, which creates a special need for robust post-transcriptional regulation. uBL4A plays any role in targeting cellular proteins for degradation. Recombinant human uBL4A protein, fused to His-tag at C-terminus, was expressed in E. coli and purified by using conventional chromatography techniques.

NKMAXBio We support you, we believe in your research

Recombinant human UBL4A protein

Catalog Number: ATGP1418

Amino acid Sequence

MQLTVKALQG RECSLQVPED ELVSTLKQLV SEKLNVPVRQ QRLLFKGKAL ADGKRLSDYS IGPNSKLNLV VKPLEKVLLE EGEAQRLADS PPPQVWQLIS KVLARHFSAA DASRVLEQLQ RDYERSLSRL TLDDIERLAS RFLHPEVTET MEKGFSKLEH HHHHH

General References

Yang F, et al. (2007) Gene Expr Patterns. 7(1-2):131-6. Mariappan M., et al. (2010) Nature 466:1120-1124

DATA

SDS-PAGE

15% SDS-PAGE (3ug)

3ug by SDS-PAGE under reducing condition and visualized by coomassie blue stain.

