

Recombinant Human GGCT

Catalog No: C214

Description	Recombinant Human gamma-Glutamylcyclotransferase is produced by our E.coli expression system and the target gene encoding Met1-Leu188 is expressed with a 6His tag at the N-terminus.																																								
Source	E.coli																																								
Alternative name	Gamma-Glutamylcyclotransferase; Cytochrome C-Releasing Factor 21; GGCT; C7orf24; CRF21																																								
Accession No.	Q75223																																								
Formulation	Supplied as a 0.2 µm filtered solution of 20mM TrisHCl, pH 8.0.																																								
Quality Control	Purity: Greater than 95% as determined by reducing SDS-PAGE. Endotoxin: Less than 0.1 ng/µg (1 IEU/µg).																																								
Shipping	The product is shipped on dry ice/polar packs. Upon receipt, store it immediately at the temperature listed below.																																								
Storage	Store at < -20°C, stable for 6 months after receipt. Please minimize freeze-thaw cycles.																																								
Reconstitution	Always centrifuge tubes before opening. Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100µg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze---thaw cycles.																																								
Amino Acid Sequence	MGSSHHHHHSSGLVPRGSHMANSGCKDVTGPDEESFLYFAYGSNLLTERIHLRNPSAFFCVARLQDFKLDFGNSQGKTSQTHHGGIATIFQSPGDEVVGVVWKMNKSNLNSLDEQEGVKSGMYVVIEVKVATQEGKEITCRSYLMNTYESAPPSPQYKKIIC MGAKENGLPLEYQEKLKAIEPNDYTGKVSEEEIEDIKKGETQTL																																								
Background	Human Y-Glutamylcyclotransferase belongs to the Transferases family, specifically the Aminoacyltransferase. Gamma-Glutamylcyclotransferase catalyzes the formation of 5-Pxoproline from Gamma-Glutamyl Dipeptides. It plays an important role in Glutathione Homeostasis. Gamma-Glutamylcyclotransferase induces the release of Cytochrome C from the mitochondria resulting in the induction of apoptosis.																																								
SDS-Page	<table border="1"> <thead> <tr> <th></th> <th>kDa</th> <th>MK</th> <th>R</th> <th>NR</th> </tr> </thead> <tbody> <tr> <td></td> <td>120</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>90</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>60</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>40</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>30</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>20</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td>14</td> <td></td> <td></td> <td></td> </tr> </tbody> </table>		kDa	MK	R	NR		120					90					60					40					30					20					14			
	kDa	MK	R	NR																																					
	120																																								
	90																																								
	60																																								
	40																																								
	30																																								
	20																																								
	14																																								