

Transfection reagent

In Vivo Transduction

Protocol

IMPORTANT NOTES – Before you begin

- 1. The conditions provided above might require some further optimizations depending on your nucleic acids, animal, territory, routes of injection etc...
- 2. We suggest to use 10 to 20 µL of In vivo ViroMag per 1x106 infectious viral particles.
- 3. Allow reagents to reach RT and gently vortex them before forming complexes.
- 4. The final DNA concentration should not exceed 0.5 mg/mL.
- 5. Dilutes the reagents with deionized water for doses less than 1µL. Discard the diluted reagent after use.
- 6. Nucleic acids should be as pure as possible, endotoxins free and prepare in water
- 7. For the complexes preparation and injection, prefer glucose 5% solution or saline buffer (HBS, PBS, normal saline, Ringer's solution).
- 8. Do not inject more than 1 mL of In vivo ViroMag per animal.
- 9. Do not inject complexes if precipitate has formed
- 10. Do not freeze magnetic nanoparticles
- 11. Do not add anything to the stock solution of magnetic nanoparticles
- 12. Magnet manipulation:
 - a. Manipulate carefully the magnets. Danger of injury by strong magnetic attraction of ferromagnetic material
 - b. Keep away from electronic devices and magnetic storage devices
 - c. Persons with cardiac pacemakers should not work with these magnets

For additional information and protocols (optimization, scaling, co-transfection...) tips, troubleshooting or other applications

www.ozbiosciences.com

Any questions?

tech@ozbiosciences.com

In vivo ViroMag Reagent | Specifications

Package content	IV-VM30250: 250µL of In vivo ViroMag IV-VM30500: 500µL of In vivo ViroMag IV-KC30230: 250µL of In vivo ViroMag + a Magnets set (IV-MAG1) IV-TK30230: 50µL of In vivo ViroMag + 1 cylinder magnet (Ø 10mm) IV-MAG1, Magnet Set: 1 extra small cylinder (Ø 2mm), 1 small cylinder (Ø 5mm), 1 cylinder (Ø 10mm), 1 square (18x18 mm) magnets IV-MAG2, Square Magnets set: 4 square magnets (18x18 mm) IV-MAG3, Cylinder Magnet set: 4 extra small cylinder (Ø 2 mm), 4 small cylinder (Ø 5 mm), 4 cylinder (Ø 10 mm) magnets
Shipping conditions	Room Temperature
Storage condition	Store the In vivo ViroMag reagent at +4°C upon reception
Shelf life	1 year from the date of purchase when properly stored and handled
Product Description	In vivo ViroMag is an optimized nanoparticles formulation dedicated to viral vectors for in vivo transduction. It is particularly suitable for Lentiviral/Retroviral, Adenoviral and Adeno-Associated Viral (AAV) vectors.
Important notice	For research use only. Not for use in diagnostic procedures

Applications

1. Viral Vectors

In vivo ViroMag has been developed for in vivo targeted transduction with any viral vectors. Virus/nanoparticles can be easily administrated through various injection routes such as systemic administration (intravenous, intra-artery) or local administration (intraperitoneal, intratumoral, intracerebroventricular, intramuscular).

Optimal conditions may vary depending on the viral vector, animal model, administration route and the target organ. Therefore, use the Table 1 as a starting point for volume of injection in mouse and rats and Table 3 for viral vectors amount.

Mouse					
Route of injection	Total volume of injection according to animal weight	Site of injection			
Intravenous	200 μL (10-25 μL/g)	Tail vein			
Intramuscular	100 µL (50 µL x 2 sites of injection)	Caudal tigh			
Subcutaneous	200 μL (10-40 μL/g)	Scruff			
Intraperitoneal	400 μL (20 μL/g)	Lower Ventral Quadrants			
Intratumoral	100 μL (0.5 μL/mm³)	Tumor			
Intracerebroventricular 2 µL		Brain ventricle			
Rat					
Route of injection	Total volume of injection	Site of injection			
Intravenous	Intravenous 2.5 mL (10-20 µL/g)				
Intramuscular	300 µL (100 µL x 3 sites of injection)	Triceps, Quadriceps, Gluteals			
Subcutaneous	1.25 mL (5-10 μL/g)	Scruff, Back, Abdomen			
Intraperitoneal	2.5 mL (10-20 μL/g)	Lower Ventral Quadrants			
Intratumoral	100 μL (0.5 μL/mm³)	Tumor			
Intracerebroventricular 10 µL		Brain ventricle			

Table 1: Suggested volume of injection in mouse (20 g) and rat (250 g)

For more detailed protocols, see our Applications Notes on our website www.ozbiosciences.com or contact us at tech@ozbiosciences.com.

2. Magnets

Several kinds of magnets are provided with the *In vivo* ViroMag kit; use Table 2 to choose the best one adapted to your application.

Kind of magnet	Tissue	
Extra Small Cylinder	Brain area	
2 mm (diameter) x 5 mm (height)	 Endothelial cells 	
	 Small tumors 	
	 Lymph node 	
	 Ovary 	
	 Adrenal gland 	
<u>Small Cylinder</u>	Subcutaneous tumors	
5 mm (diameter) x 5 mm (height)	 Salivary gland 	
	• Brain	
<u>Cylinder</u>	Subcutaneous tumors	
10 mm x 5 mm (height)	 Pancreas 	
	 Spleen 	
Square	Large organs	
17 mm (length) x 17 mm (length)	 Large tumor 	
x 5mm (height)	 Muscle 	
	• Lung	
	 Skin flap 	

Table 2: Examples of use of magnets

OZ Biosciences is currently proposing only those magnets. If you need specific magnet in terms of shape and size, please contact our technical service for obtaining fundamental properties of the magnet to purchase.

Protocol

Determine the required injection volume according to the Table 1. The amount of virus you need to inject is closely correlated to your viral preparation, the route of injection, the target tissue and your preliminary *in vitro* studies. Table 3 indicates a starting point for your protocol optimization. The *In vivo* ViroMag and injection solution should be at room temperature. You may use 10 to 20 μ L of *In vivo* ViroMag per 1x106 infectious viral particles. Do not exceed recommended volumes for injection.

Virus type	Viral particles titer (pfu)	In vivo ViroMag quantity (µL)
Adenovirus	1x106 to 5x108	10-20
AAV	1x106 to 1x1010	10-20
Lentivirus	1x106 to 5x108	10-20

Table 3: Suggested quantity of viral particles and In vivo ViroMag injected per mouse

1. Reagent Preparation

Immediately before use, vortex *In vivo* ViroMag vial. Add suitable amount of *In vivo* ViroMag to a sterile microtube (Table 3).

2. Complexes formation.

- a. Add your virus preparation to the tube containing the *In vivo* ViroMag reagent and mix immediately by pipetting up & down.
- b. Incubate 15-30 min at room temperature.

3. Injection.

- a. Place the magnet on your targeted tissue
- b. Slowly inject the complexes
- c. Let the magnet stand from 5 min to 1 h (see table 4 and next section).
 Notes for intracerebroventricular or intra tumoral injections: Place the magnet few seconds after the complexes injection. Dye e.g. Fast Green FCF can be added to the complexes solution for a better monitoring of the injection.
- d. Monitor gene expression at the appropriate time point.

4. Magnetic incubation

The magnetic incubation time depends on the animal and the targeted tissue:

- for tumor, from 20 min (mouse, rat) to 1 hour (hamster, cat)
- for endothelial cells, from 5 to 20 min for mouse and rat, from 20 min to 1 h for rabbit or pig
- for peripheral tissue (e.g. stomach, gut, heart), 20 min
- for intracerebroventricular injection, 5 min

Refer to table 4, for other magnetic incubation times depending on target tissue, route of injection and magnet type.

Target tissue	Route of injection	Kind of magnet	Magnetic incubation	
Tumor	Intravenous, Intra- arterial, Intratumoral	All kind	20 min to 1 h	
Endothelial cells	Intravenous, Intra-	Extra small	5 min to 1 h	
	arterial	Cylinder		
Heart	Intra-arterial	Cylinder	20 min	
Liver	Intravenous	Cylinder, Square	10 min	
Lung	Intravenous	Square	10 min	
Pancreas	Intrapancreatic	Cylinder	20 min	
Kidney	Intraperitoneal	Cylinder, Square	20 min	
Gut	llea lumen	All kind	20 min	
Stomach	Stomach lumen	Cylinder, Square	20 min	
Brain	Intraventricular	Small Cylinder	5 min	

 Table 4: Suggested magnetic incubation time for various tissue

IMPORTANT NOTES:

- For long incubation time, (e.g. intratumoral injection), the magnet could be attached to the animal using adhesive tape in order to create a strong magnetic field in the area of the injection.
- Magnets can be easily handled with any magnetic surgical instruments (forceps, clamps, needle holders).
- Magnets can be sterilized by heat (steam sterilization or dry heat sterilization) or chemical means (ethanol 70%).

5. Bibliographic references

Please refer to the results sheet and to our website for a more exhaustive list of bibliographic references.

- Gupta A.K and Gupta M 2005 Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. *Biomaterials*. 26:3995-4021.
- Laurent N, Sapet C, Le Gourrierec L, Bertosio E and Zelphati O 2011 Nucleic acid delivery nanoparticles: the Magnetofection™ technology. *Therapeutic Delivery*. 2:471:482.
- Plank C, Zelphati O and Mykhaylyk O. 2011 Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev. 63:1300-1331

Related products for in vivo applications

- BrainFectIN enables nucleic acids delivery into central nervous system of small animals.
- In vivo DogtorMag a cationic lipid-based magnetic nanoparticles formulation, designed for in vivo targeted transfection of nucleic acids.
- In vivo SilenceMag a cationic polymer-based magnetic nanoparticles formulation, designed to transfect small RNA, into target cell/tissue in vivo.

Purchaser Notification

Limited License

The purchase of the In vivo ViroMag grants the purchaser a non-transferable, non-exclusive license to use the kit and/or its separate and included components (as listed this protocol). This reagent is intended for in-house research only by the buyer. Such use is limited to the transfection of nucleic acids as described in the product manual. In addition, research only use means that this kit and all of its contents are excluded, without limitation, from resale, repackaging, or use for the making or selling of any commercial product or service without the written approval of OZ Biosciences. Separate licenses are available from OZ Biosciences for the express purpose of non-research use or applications of the In vivo ViroMag. To inquire about such licenses, or to obtain authorization to transfer or use the enclosed material, contact us at OZ Biosciences. Buyers may end this License at any time by returning all In vivo ViroMag reagents and documentation to OZ Biosciences, or by destroying all in vivo ViroMag components. Purchasers are advised to contact OZ Biosciences with the notification that a In vivo ViroMag is being returned in order to be reimbursed and/or to definitely terminate a license for internal research use only granted through the purchase of the kit(s). This document covers entirely the terms of the In vivo ViroMag research only license, and does not grant any other express or implied license. The laws of the French Government shall govern the interpretation and enforcement of the terms of this License.

Product Use Limitations

In vivo ViroMag and all of its components are developed, designed, intended, and sold for research use only. They are not to be used for human diagnostic or included/used in any drug intended for human use. All care and attention should be exercised in the use of the kit components by following proper research laboratory practices

EUROPE & ASIA OZ Biosciences SAS

163 avenue de Luminy Case 922, zone entreprise 13288 Marseille cedex 09 France

Ph: +33 (0) 486 948 516 Fax: +33 (0) 463 740 015

contact@ozbiosciences.com order@ozbiosciences.com tech@ozbiosciences.com

USA & CANADA OZ Biosciences INC

7975 Dunbrook Road Suite B San Diego CA 92126 USA

Ph: + 1-858-246-7840 Fax: + 1-855-631-0626

contactUSA@ozbiosciences.com orderUSA@ozbiosciences.com techUSA@ozbiosciences.com

Rev 06/2024