Human DLL4 Protein (Fc Tag)

Catalog Number: 10171-H02H

General Information

Gene Name Synonym:

Delta-like 4; hdelta2

Protein Construction:

A DNA sequence encoding the extracellular domain (Met 1-Pro 524) of human DLL4 (NP_061947.1) pro-protein was expressed with the fused Fc region of human IgG1 at the C-terminus.

Source: Human

Expression Host: HEK293 Cells

QC Testing

Purity: > 95 % as determined by SDS-PAGE

Bio Activity:

1. Measured by its binding ability in a functional ELISA. 2. Immobilized human DLL4 (cat: 10171-H02H) at 10 $\mu g/mL$ (100 $\mu L/well)$ can bind biotinylated mouse NOTCH1-his. The EC $_{50}$ of biotinylated mouse NOTCH1-his is 40 ng/mL. 3. Measured by the ability of the immobilized protein to enhance BMP2-induced alkaline phosphatase activity in C3H10T1/2 mouse embryonic fibroblast cells. The ED $_{50}$ for this effect is typically 1-8 $\mu g/mL$ in the presence of 500 ng/mL recombinant human BMP2.

Endotoxin:

< 1.0 EU per μg of the protein as determined by the LAL method

Stability:

Samples are stable for up to twelve months from date of receipt $\,$ at -70 $\,$ $^{\circ}$ C

Predicted N terminal: Ser 27

Molecular Mass:

The recombinant human DLL4/Fc is a disulfide-linked homodimeric protein after removal of the signal peptide. The reduced monomer consists of 736 amino acids and predicts a molecular mass of 81 kDa. As a result of glycosylation, the rh DLL4/Fc monomer migrates as approximately 100-110 kDa band in SDS-PAGE under reducing conditions.

Formulation:

Lyophilized from sterile PBS, pH 7.4

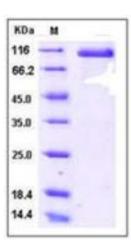
Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:

Store it under sterile conditions at -20° C to -80° C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.


Reconstitution:

Detailed reconstitution instructions are sent along with the products.

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.

For US Customer: Fax: 267-657-0217 • Tel: 215-583-7898

SDS-PAGE:

Protein Description

Delta-like protein 4 (DLL4, Delta4), a type I membrane-bound Notch ligand, is one of five known Notch ligands in mammals and interacts predominantly with Notch 1, which has a key role in vascular development. Recent studies yield substantial insights into the role of DLL4 in angiogenesis. DLL4 is induced by vascular endothelial growth factor (VEGF) and acts downstream of VEGF as a 'brake' on VEGF-induced vessel growth, forming an autoregulatory negative feedback loop inactivating VEGF. DLL4 is downstream of VEGF signaling and its activation triggers a negative feedback that restrains the effects of VEGF. Attenuation of DLL4/Notch signaling results in chaotic vascular network with excessive branching and sprouting. DLL4 is widely distributed in tissues other than vessels including many malignancies. Furthermore, the molecule is internalized on binding its receptor and often transported to the nucleus. In pathological conditions, such as cancer, DLL4 is up-regulated strongly in the tumour vasculature. Blockade of DLL4-mediated Notch signaling strikingly increases nonproductive angiogenesis, but significantly inhibits tumor growth in preclinical mouse models. In preclinical studies, blocking of DLL4/Notch signaling is associated with a paradoxical increase in tumor vessel density, yet causes marked growth inhibition due to functionally defective vasculature. Thus, DLL4 blockade holds promise as an additional strategy for angiogenesis-based cancer therapy.

References

1.Yan M, et al. (2007) Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res. 13(24): 7243-6. 2.Sainson RC, et al. (2007) Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med. 13(9): 389-95. 3.Martinez JC, et al. (2009) Nuclear and membrane expression of the angiogenesis regulator delta-like ligand 4 (DLL4) in normal and malignant human tissues. Histopathology. 54(5): 598-606.