Human ACP1 / LMW-PTP Protein (GST Tag) Catalog Number: 10957-H09E # **General Information** ## Gene Name Synonym: HAAP ## **Protein Construction:** A DNA sequence encoding human ACP1 (AAI06012.1) (Met 1-His 158) was fused with the GST tag at the N-terminus. Source: Human Expression Host: E. coli **QC** Testing Purity: > 88 % as determined by SDS-PAGE **Bio Activity:** Measured by its ability to cleave a substrate, pNitrophenyl phosphate (pNPP). The specific activity is >65,000 pmol/min/µg. #### **Endotoxin:** Please contact us for more information. #### Stability: Samples are stable for up to twelve months from date of receipt at -70 $^{\circ}\mathrm{C}$ Predicted N terminal: Met ## **Molecular Mass:** The recombinant human ACP1/GST chimera consists of 384 amino acids and predicts a molecular mass of 44.3 kDa. The apparent molecular mass of rh ACP1 is approximately 40 kDa in SDS-PAGE under reducing conditions. ## Formulation: Lyophilized from sterile 50mM Tris, 150mM NaCl, pH 8.0 Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements. ## **Usage Guide** ## Storage: Store it under sterile conditions at -20° C to -80° C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage. Avoid repeated freeze-thaw cycles. # Reconstitution: Detailed reconstitution instructions are sent along with the products. #### SDS-PAGE: # **Protein Description** The low molecular weight phosphotyrosine phosphatase (LMW-PTP), also known as Acid phosphatase 1 (ACP1), belongs to the low molecular weight phosphotyrosine protein phosphatase family are involved in the regulation of important physiological functions, including stress resistance and synthesis of the polysaccharide capsule. ACP1/LMW-PTP is an enzyme involved in platelet-derived growth factor-induced mitogenesis and cytoskeleton rearrangement. LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In vitro, LMW-PTP was found to efficiently dephosphorylate activated FcgammaRIIA and LAT, but not Syk or phospholipase Cgamma2. The overexpression of LMW-PTP inhibited activation of Syk downstream of FcgammaRIIA and reduced intracellular Ca(2+) mobilization. It been demonstrated that LMW-PTP is responsible for FcgammaRIIA dephosphorylation, and is implicated in the down-regulation of cell activation mediated by this ITAM-bearing immunoreceptor. In addition, ACP1 is a highly polymorphic phosphatase that is especially abundant in the central nervous system and is known to be involved in several signal transduction pathways. ## References 1.Cirri P, et al. (1998) Low molecular weight protein-tyrosine phosphatase tyrosine phosphorylation by c-Src during platelet-derived growth factor-induced mitogenesis correlates with its subcellular targeting. J Biol Chem. 273(49): 32522-7. 2.Chiarugi P, et al. (2002) Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem. 277(40): 37331-8. 3.Bottini N, et al. (2002) Convulsive disorder and the genetics of signal transduction; a study of a low molecular weight protein tyrosine phosphatase in a pediatric sample. Neurosci Lett. 333(3): 159-62. Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS. For US Customer: Fax: 267-657-0217 • Tel: 215-583-7898 Global Customer: Fax :+86-10-5862-8288 • Tel:+86-400-890-9989 • http://www.sinobiological.com