Human Uracil-DNA glycosylase / UNG Protein (GST Tag)

Catalog Number: 12939-H09E

General Information

Gene Name Synonym:

DGU; HIGM4; HIGM5; UDG; UNG1; UNG15; UNG2

Protein Construction:

A DNA sequence encoding the human UNG isoform 1 (P13051-2) (Phe 85-Leu 304) was fused with the GST tag at the N-terminus.

Source: Human

Expression Host: E. coli

QC Testing

Purity: > 90 % as determined by SDS-PAGE

Endotoxin:

Please contact us for more information.

Stability:

Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Met

Molecular Mass:

The recombinant human UNG/GST chimera consists of 452 amino acids and has a predicted molecular mass of 52 kDa. It migrates as an approxiamtely 48 kDa band in SDS-PAGE under reducing conditions.

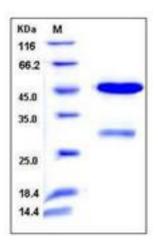
Formulation:

Lyophilized from sterile 40mM Tris, 0.15M NaCl, 2mM GSH, pH 7.5

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:


Store it under sterile conditions at $-20\,^\circ\!\mathrm{C}$ to $-80\,^\circ\!\mathrm{C}$ upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Isoform 1 is widely expressed with the highest expression in skeletal muscle, heart and testicles. Isoform 2 has the highest expression levels in tissues containing proliferating cells. Uracil-DNA glycosylase exists in two forms: mitochondrial uracil-DNA glycosylase 1 (UNG1) and nuclear uracil-DNA glycosylase 2 (UNG2). uracil-DNA glycosylase. This gene encodes one of several uracil-DNA glycosylases. One important function of uracil-DNA glycosylases is to prevent mutagenesis by eliminating uracil from DNA molecules by cleaving the N-glycosylic bond and initiating the baseexcision repair (BER) pathway. Uracil bases occur from cytosine deamination or misincorporation of dUMP residues. Alternative promoter usage and splicing of this gene leads to two different isoforms: the mitochondrial UNG1 and the nuclear UNG2. The UNG2 term was used as a previous symbol for the CCNO gene (GeneID 10309), which has been confused with this gene, in the literature and some databases. Defects in UNG are a cause of immunodeficiency with hyper-IgM type 5 (HIGM5). A rare immunodeficiency syndrome characterized by normal or elevated serum IgM levels with absence of IgG, IgA, and IgE. It results in a profound susceptibility to bacterial infections.

References

1.Akbari M, et al. (2007) Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Neuroscience. 145(4):1201-12. 2.Slupphaug G, et al. (1996) Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry. 34(1): 128-38. 3.Pytel D, et al. (2008) Uracil-DNA glycosylases. Postepy Biochem. 54(4): 362-70.

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.

For US Customer: Fax: 267-657-0217 • Tel: 215-583-7898

Global Customer: Fax :+86-10-5862-8288 • Tel:+86-400-890-9989 • http://www.sinobiological.com