Human GAD65 / GAD2 / GAD-2 Protein (GST Tag)

Catalog Number: 17802-H09B

General Information

Gene Name Synonym:

GAD65

Protein Construction:

A DNA sequence encoding the human GAD2 (NP_000809.1) (Met1-Leu585) was expressed with a GST tag at the N-terminus.

Source: Human

Expression Host: Baculovirus-Insect Cells

QC Testing

Purity: > 90 % as determined by SDS-PAGE.

Endotoxin:

< 1.0 EU per µg protein as determined by the LAL method.

Stability:

Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Met

Molecular Mass:

The recombinant human GAD2 consists of 819 amino acids and predicts a molecular mass of 92.6 kDa.

Formulation:

Lyophilized from sterile 200 Tirs, 150 mM NaCl, pH 8.0, 10 % glycerol, 1 mM GSH.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:

Store it under sterile conditions at $\text{-}20\,^\circ\!\text{C}$ to $\text{-}80\,^\circ\!\text{C}$ upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Glutamate decarboxylase 2, also known as glutamate decarboxylase 65 kDa isoform, 65 kDa glutamic acid decarboxylase, GAD2 and GAD65, is a member of thegroup II decarboxylase family. GAD2 is identified as a major autoantigen in insulin-dependent diabetes. GAD2 is responsible for catalyzing the production of gamma-aminobutyric acid from L-glutamic acid. A pathogenic role for this enzyme has been identified in the human pancreas since it has been identified as an autoantibody and an autoreactive T cell target in insulin-dependent diabetes. GAD2 may also play a role in the stiff man syndrome. GAD2 is implicated in the formation of the gamma-aminobutyric acid (GABA), a neurotransmitter involved in the regulation of food intake. GABA is synthesized in brain by two isoforms of glutamic acid decarboxylase (Gad), GAD1 and GAD2. GAD1 provides most of the GABA in brain, but GAD2 can be rapidly activated in times of high GABA demand. Mice lacking GAD2 are viable whereas deletion of GAD1 is lethal. Deletion of GAD2 increased ethanol palatability and intake and slightly reduced the severity of ethanol-induced withdrawal.

References

1.Karlsen A.E., et al.,(1991), Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc. Natl. Acad. Sci. U.S.A. 88:8337-8341. 2.Bu D.-F., et al., (1992), Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene.Proc. Natl. Acad. Sci. U.S.A. 89:2115-2119. 3.Bu D.-F., et al.,(1994), The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67 and GAD65) suggests that they derive from a common ancestral GAD.Genomics 21:222-228.

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.

For US Customer: Fax: 267-657-0217 • Tel: 215-583-7898

Global Customer: Fax :+86-10-5862-8288
■ Tel:+86-400-890-9989
■ http://www.sinobiological.com