# Rhesus TNFRSF4 / OX40 / CD134 Protein (His Tag)

Catalog Number: 90846-C08H



### **General Information**

#### Gene Name Synonym:

TNFRSF4

#### **Protein Construction:**

A DNA sequence encoding the rhesus TNFRSF4 (XP $\_$ 001090870.1) (Met1-Ala216) was expressed with a polyhistidine tag at the C-terminus.

Source: Rhesus

Expression Host: HEK293 Cells

**QC** Testing

Purity: > 95 % as determined by SDS-PAGE.

**Endotoxin:** 

< 1.0 EU per µg protein as determined by the LAL method.

Predicted N terminal: Leu 29

Molecular Mass:

The recombinant rhesus TNFRSF4 consists of 199 amino acids and predicts a molecular mass of 21.7 kDa. it migrates as an approximately 42.4 kDa band in SDS-PAGE under reducing conditions.

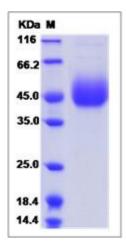
#### Formulation:

Lyophilized from sterile PBS, pH 7.4.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

# **Usage Guide**

#### Stability & Storage:


Samples are stable for twelve months from date of receipt at -20  $^{\circ}$ C to -80  $^{\circ}$ C.

Avoid repeated freeze-thaw cycles.

#### Reconstitution:

Detailed reconstitution instructions are sent along with the products.

#### SDS-PAGE:



## **Protein Description**

OX40 (CD134) and its binding partner, OX40L (CD252), are members of the tumor necrosis factor receptor/tumor necrosis factor superfamily, is known to break an existing state of tolerance in malignancies, leading to a reactivation of antitumor immunity. The interaction between OX40 and OX40L plays an important role in antigen-specific T-cell expansion and survival. OX40 and OX40L also regulate cytokine production from T cells, antigen-presenting cells, natural killer cells, and natural killer T cells, and modulate cytokine receptor signaling. In line with these important modulatory functions, OX40-OX40L interactions have been found to play a central role in the development of multiple inflammatory and autoimmune diseases, making them attractive candidates for intervention in the clinic. Conversely, stimulating OX40 has shown it to be a candidate for therapeutic immunization strategies for cancer and infectious disease.

#### References

1.Compaan D.M., et al. (2006) .The crystal structure of the costimulatory OX40-OX40L complex. Structure 14:1321-1330.
2.Kawamata S., et al. (1998) .Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J. Biol. Chem. 273:5808-5814.

3.Byun M., (2013) Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J. Exp. Med. 210:1743-1759.