

Anti-FGFR1 Antibody

Description

The protein encoded by this gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds both acidic and basic fibroblast growth factors and is involved in limb induction. Mutations in this gene have been associated with Pfeiffer syndrome, Jackson-Weiss syndrome, Antley-Bixler syndrome, osteoglophonic dysplasia, and autosomal dominant Kallmann syndrome 2. Chromosomal aberrations involving this gene are associated with stem cell myeloproliferative disorder and stem cell leukemia lymphoma syndrome. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized.

Model STJ113533

Host Rabbit

Reactivity Mouse

Applications WB

Immunogen A synthetic peptide corresponding to a sequence within amino acids 300-400

of human FGFR1 (NP_075598.2).

Gene ID <u>2260</u>

Gene Symbol FGFR1

Dilution range WB 1:200 - 1:500

Tissue Specificity Detected in astrocytoma, neuroblastoma and adrenal cortex cell lines, Some

isoforms are detected in foreskin fibroblast cell lines, however isoform 17,

isoform 18 and isoform 19 are not detected in these cells

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Fibroblast growth factor receptor 1 FGFR-1

Molecular Weight 91.868 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:3688OMIM:101600Reactome:R-HSA-109704

Alternative Names Fibroblast growth factor receptor 1 FGFR-1

Function Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth

factors and plays an essential role in the regulation of embryonic

development, cell proliferation, differentiation and migration, Required for normal mesoderm patterning and correct axial organization during embryonic

development, normal skeletogenesis and normal development of the

gonadotropin-releasing hormone (GnRH) neuronal system, Phosphorylates PLCG1, FRS2, GAB1 and SHB, Ligand binding leads to the activation of several signaling cascades, Activation of PLCG1 leads to the production of

the cellular signaling molecules diacylglycerol and inositol 1,4,5-

trisphosphate, Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1,

PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway, Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2, In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription, FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and

degradation,

Cellular Localization Cell membrane

Modifications

Post-translational Autophosphorylated, Binding of FGF family members together with heparan

sulfate proteoglycan or heparin promotes receptor dimerization and autophosphorylation on tyrosine residues, Autophosphorylation occurs in

trans between the two FGFR molecules present in the dimer and proceeds in a highly ordered manner, Initial autophosphorylation at Tyr-653 increases the

kinase activity by a factor of 50 to 100, After this, Tyr-583 becomes phosphorylated, followed by phosphorylation of Tyr-463, Tyr-766, Tyr-583

and Tyr-585, In a third stage, Tyr-654 is autophosphorylated, resulting in a

further tenfold increase of kinase activity, Phosphotyrosine residues provide docking sites for interacting proteins and so are crucial for FGFR1 function and its regulation,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com